ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of Hybrid-ARQ in Block-Fading Channels: A Fixed Outage Probability Analysis

148   0   0.0 ( 0 )
 نشر من قبل Peng Wu
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the performance of hybrid-ARQ (automatic repeat request) in Rayleigh block fading channels. The long-term average transmitted rate is analyzed in a fast-fading scenario where the transmitter only has knowledge of channel statistics, and, consistent with contemporary wireless systems, rate adaptation is performed such that a target outage probability (after a maximum number of H-ARQ rounds) is maintained. H-ARQ allows for early termination once decoding is possible, and thus is a coarse, and implicit, mechanism for rate adaptation to the instantaneous channel quality. Although the rate with H-ARQ is not as large as the ergodic capacity, which is achievable with rate adaptation to the instantaneous channel conditions, even a few rounds of H-ARQ make the gap to ergodic capacity reasonably small for operating points of interest. Furthermore, the rate with H-ARQ provides a significant advantage compared to systems that do not use H-ARQ and only adapt rate based on the channel statistics.



قيم البحث

اقرأ أيضاً

The focus of this paper is an information-theoretic study of retransmission protocols for reliable packet communication under a secrecy constraint. The hybrid automatic retransmission request (HARQ) protocol is revisited for a block-fading wire-tap c hannel, in which two legitimate users communicate over a block-fading channel in the presence of a passive eavesdropper who intercepts the transmissions through an independent block-fading channel. In this model, the transmitter obtains a 1-bit ACK/NACK feedback from the legitimate receiver via an error-free public channel. Both reliability and confidentiality of secure HARQ protocols are studied by the joint consideration of channel coding, secrecy coding, and retransmission protocols. In particular, the error and secrecy performance of repetition time diversity (RTD) and incremental redundancy (INR) protocols are investigated based on good Wyner code sequences, which ensure that the confidential message is decoded successfully by the legitimate receiver and is kept in total ignorance by the eavesdropper for a given set of channel realizations. This paper first illustrates that there exists a good rate-compatible Wyner code family which ensures a secure INR protocol. Next, two types of outage probabilities, connection outage and secrecy outage probabilities are defined in order to characterize the tradeoff between the reliability of the legitimate communication link and the confidentiality with respect to the eavesdroppers link. For a given connection/secrecy outage probability pair, an achievable throughput of secure HARQ protocols is derived for block-fading channels. Finally, both asymptotic analysis and numerical computations demonstrate the benefits of HARQ protocols to throughput and secrecy.
In this paper, outage performance of hybrid automatic repeat request with incremental redundancy (HARQ-IR) is analyzed. Unlike prior analyses, time-correlated Nakagami-$m$ fading channel is considered. The outage analysis thus involves the probabilit y distribution analysis of a product of multiple correlated shifted Gamma random variables and is more challenging than prior analyses. Based on the finding of the conditional independence of the received signal-to-noise ratios (SNRs), the outage probability is exactly derived by using conditional Mellin transform. Specifically, the outage probability of HARQ-IR under time-correlated Nakagami-$m$ fading channels can be written as a weighted sum of outage probabilities of HARQ-IR over independent Nakagami fading channels, where the weightings are determined by a negative multinomial distribution. This result enables not only an efficient truncation approximation of the outage probability with uniform convergence but also asymptotic outage analysis to further extract clear insights which have never been discovered for HARQ-IR even under fast fading channels. The asymptotic outage probability is then derived in a simple form which clearly quantifies the impacts of transmit powers, channel time correlation and information transmission rate. It is proved that the asymptotic outage probability is an inverse power function of the product of transmission powers in all HARQ rounds, an increasing function of the channel time correlation coefficients, and a monotonically increasing and convex function of information transmission rate. The simple expression of the asymptotic result enables optimal power allocation and optimal rate selection of HARQ-IR with low complexity. Finally, numerical results are provided to verify our analytical results and justify the application of the asymptotic result for optimal system design.
In this paper the performance limits and design principles of rateless codes over fading channels are studied. The diversity-multiplexing tradeoff (DMT) is used to analyze the system performance for all possible transmission rates. It is revealed fro m the analysis that the design of such rateless codes follows the design principle of approximately universal codes for parallel multiple-input multiple-output (MIMO) channels, in which each sub-channel is a MIMO channel. More specifically, it is shown that for a single-input single-output (SISO) channel, the previously developed permutation codes of unit length for parallel channels having rate LR can be transformed directly into rateless codes of length L having multiple rate levels (R, 2R, . . ., LR), to achieve the DMT performance limit.
309 - Ilmu Byun , , Kwang Soon Kim 2010
Cooperative hybrid-ARQ (HARQ) protocols, which can exploit the spatial and temporal diversities, have been widely studied. The efficiency of cooperative HARQ protocols is higher than that of cooperative protocols, because retransmissions are only per formed when necessary. We classify cooperative HARQ protocols as three decode-and-forward based HARQ (DF-HARQ) protocols and two amplified-and-forward based (AF-HARQ) protocols. To compare these protocols and obtain the optimum parameters, two unified frameworks are developed for protocol analysis. Using the frameworks, we can evaluate and compare the maximum throughput and outage probabilities according to the SNR, the relay location, and the delay constraint for the protocols.
This paper concerns the maximum coding rate at which data can be transmitted over a noncoherent, single-antenna, Rayleigh block-fading channel using an error-correcting code of a given blocklength with a block-error probability not exceeding a given value. A high-SNR normal approximation of the maximum coding rate is presented that becomes accurate as the signal-to-noise ratio (SNR) and the number of coherence intervals $L$ over which we code tend to infinity. Numerical analyses suggest that the approximation is accurate at SNR values above 15dB and when the number of coherence intervals is 10 or more.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا