ﻻ يوجد ملخص باللغة العربية
We experimentally and theoretically investigate the dephasing rates of the coherent evolution of a resonantly driven pseudo spin emersed in a reservoir of pseudo spins. The pseudo spin is realized by optically exciting 87 Rb atoms to a Rydberg state. Hence, the upper spin states are coupled via the strong van der Waals interaction. Two different experimental techniques to measure the dephasing rates are shown: the rotary echo technique known from nuclear magnetic resonance physics and electromagnetically induced transparency. The experiments are performed in a dense frozen Rydberg gas, either confined in a magnetic trap or in an optical dipole trap. Additionally, a numerical simulation is used to analyse the dephasing in the rotary echo experiments.
We report the creation of an interacting cold Rydberg gas of strontium atoms. We show that the excitation spectrum of the inner valence electron is sensitive to the interactions in the Rydberg gas, even though they are mediated by the outer Rydberg e
Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid dephasing in many-body Rydberg ensembles [E. Goldschmidt et al., PRL 116, 113001 (2016)]. Such broadening has serious implications for many proposa
We study electromagnetically induced transparency (EIT) of a weakly interacting cold Rydberg gas. We show that the onset of interactions is manifest as a depopulation of the Rydberg state and numerically model this effect by adding a density-dependen
A defining property of particles is their behavior under exchange. In two dimensions anyons can exist which, opposed to fermions and bosons, gain arbitrary relative phase factors or even undergo a change of their type. In the latter case one speaks o
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubits transition frequenc