ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional modeling of the asymmetric blast wave from the 2006 outburst of RS Ophiuchi: Early X-ray emission

178   0   0.0 ( 0 )
 نشر من قبل Salvatore Orlando
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chandra/HETG observations of the recurrent nova RS Ophiuchi at day 13.9 of its 2006 outburst reveal a spectrum covering a large range in plasma temperature and characterized by asymmetric and blue-shifted emission lines. We investigate the origin of these asymmetries and broadening of emission lines. We perform 3-D hydrodynamic simulations of the blast wave from the 2006 outburst, propagating through the inhomogeneous CSM. The model takes into account the thermal conduction (including the effects of heat flux saturation) and the radiative cooling. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra/HETG. Our model reproduces the observed X-ray emission in a natural way if the CSM in which the outburst occurred is characterized by an equatorial density enhancement. Our ``best-fit model predicts that most of the early X-ray emission originates from a small region propagating in the direction perpendicular to the line-of-sight and localized just behind the interaction front between the blast wave and the equatorial density enhancement. The model predicts asymmetric and blue-shifted line profiles remarkably similar to those observed. These asymmetries are due to substantial X-ray absorption of red-shifted emission by ejecta material. The comparison of high quality data of Chandra/HETG with detailed hydrodynamic modeling has allowed us to unveil, for the first time, the details of the structure emitting in the X-ray band in early phases of the outburst evolution, contributing to a better understanding of the physics of interactions between nova blasts and CSM in recurrent novae. This may have implications for whether or not RS Ophiuchi is a Type Ia SN progenitor system.



قيم البحث

اقرأ أيضاً

70 - J. L. Sokoloski 2006
Stellar explosions such as novae and supernovae produce most of the heavy elements in the Universe. Although the onset of novae from runaway thermonuclear fusion reactions on the surface of a white dwarf in a binary star system is understood[1], the structure, dynamics, and mass of the ejecta are not well known. In rare cases, the white dwarf is embedded in the wind nebula of a red-giant companion; the explosion products plow through the nebula and produce X-ray emission. Early this year, an eruption of the recurrent nova RS Ophiuchi[2,3] provided the first opportunity to perform comprehensive X-ray observations of such an event and diagnose conditions within the ejecta. Here we show that the hard X-ray emission from RS Ophiuchi early in the eruption emanates from behind a blast wave, or outward-moving shock wave, that expanded freely for less than 2 days and then decelerated due to interaction with the nebula. The X-rays faded rapidly, suggesting that the blast wave deviates from the standard spherical shell structure[4-6]. The early onset of deceleration indicates that the ejected shell had a low mass, the white dwarf has a high mass[7], and that RS Ophiuchi is a progenitor of the type of supernova integral to studies of the expansion of the universe.
The evolution of the 2006 outburst of the recurrent nova RS Ophiuchi was followed with 12 X-ray grating observations with Chandra and XMM-Newton. We present detailed spectral analyses using two independent approaches. From the best dataset, taken on day 13.8 after outburst, we reconstruct the temperature distribution and derive elemental abundances. We find evidence for at least two distinct temperature components on day 13.8 and a reduction of temperature with time. The X-ray flux decreases as a power-law, and the power-law index changes from -5/3 to -8/3 around day 70 after outburst. This can be explained by different decay mechanisms for the hot and cool components. The decay of the hot component and the decrease in temperature are consistent with radiative cooling, while the decay of the cool component can be explained by the expansion of the ejecta. We find overabundances of N and of alpha-elements, which could either represent the composition of the secondary that provides the accreted material or that of the ejecta. The N overabundance indicates CNO-cycled material. From comparisons to abundances for the secondary taken from the literature, we conclude that 20-40% of the observed nitrogen could originate from the outburst. The overabundance of the alpha-elements is not typical for stars of the spectral type of the secondary in the RS Oph system, and white dwarf material might have been mixed into the ejecta. However, no direct measurements of the alpha-elements in the secondary are available, and the continuous accretion may have changed the observable surface composition.
201 - A. Evans 2006
We present infrared spectroscopy of the recurrent nova RS Ophiuchi, obtained 11.81, 20.75 and 55.71 days following its 2006 eruption. The spectra are dominated by hydrogen recombination lines, together with HeI, OI and OII lines; the electron tempera ture of ~10^4 K implied by the recombination spectrum suggests that we are seeing primarily the wind of the red giant, ionized by the ultraviolet flash when RS Oph erupted. However, strong coronal emission lines (i.e. emission from fine structure transitions in ions having high ionization potential) are present in the last spectrum. These imply a temperature of 930000K for the coronal gas; this is in line with x-ray observations of the 2006 eruption. The emission line widths decrease with time in a way that is consistent with the shock model for the x-ray emission.
116 - N. M. H. Vaytet 2011
Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.
Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem e variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا