ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous multi-frequency single-pulse properties of AXP XTE J1810-197

243   0   0.0 ( 0 )
 نشر من قبل Maciej Serylak
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used the 76-m Lovell, 94-m equivalent WSRT and 100-m Effelsberg radio telescopes to investigate the simultaneous single-pulse properties of the radio emitting magnetar AXP XTE J1810-197 at frequencies of 1.4, 4.8 and 8.35 GHz during May and July 2006. We study the magnetars pulse-energy distributions which are found to be very peculiar as they are changing on time-scales of days and cannot be fit by a single statistical model. The magnetar exhibits strong spiky single giant-pulse-like subpulses, but they do not fit the definition of the giant pulse or giant micropulse phenomena. Measurements of the longitude-resolved modulation index reveal a high degree of intensity fluctuations on day-to-day time-scales and dramatic changes across pulse phase. We find the frequency evolution of the modulation index values differs significantly from what is observed in normal radio pulsars. We find that no regular drifting subpulse phenomenon is present at any of the observed frequencies at any observing epoch. However, we find a quasi-periodicity of the subpulses present in the majority of the observing sessions. A correlation analysis indicates a relationship between components from different frequencies. We discuss the results of our analysis in light of the emission properties of normal radio pulsars and a recently proposed model which takes radio emission from magnetars into consideration.



قيم البحث

اقرأ أيضاً

After spending almost a decade in a radio-quiet state, the Anomalous X-ray Pulsar XTE J1810-197 turned back on in early December 2018. We have observed this radio magnetar at 1.5 GHz with ~daily cadence since the first detection of radio re-activatio n on 8 December 2018. In this paper, we report on the current timing properties of XTE J1810-197 and find that the magnitude of the spin frequency derivative has increased by a factor of 2.6 over our 48-day data set. We compare our results with the spin-down evolution reported during its previous active phase in the radio band. We also present total intensity pulse profiles at five different observing frequencies between 1.5 and 8.4 GHz, collected with the Lovell and the Effelsberg telescopes. The profile evolution in our data set is less erratic than what was reported during the previous active phase, and can be seen varying smoothly between observations. Profiles observed immediately after the outburst show the presence of at least five cycles of a very stable ~50-ms periodicity in the main pulse component that lasts for at least tens of days. This remarkable structure is seen across the full range of observing frequencies.
As part of a European Pulsar Network (EPN) multi-telescope observing campaign, we performed simultaneous multi-frequency observations at 1.4, 4.9 and 8.4 GHz during July 2006 and quasi-simultaneous multi-frequency observations from Decem- ber 2006 un til July 2007 at 2.7, 4.9, 8.4, 14.6 and 32 GHz, in order to obtain flux density measurements and spectral features of the 5.5-sec radio-emitting magnetar AXP J1810-197. We monitored the spectral evolution of its pulse shape which consists of a main pulse (MP) and an interpulse (IP). We present the flux density spectrum of the average profile and of the separate pulse components of this first-known radio-emitting transient anomalous X-ray pulsar. We observe a decrease of the flux density by a factor of 10 within 8 months and follow the disappearance of one of the two main components. Although the spectrum is generally flat, we observe large fluctuations of the spectral index with time. For that reason we have made some measurements of modulation indices for individual pulses in order to also investigate the origin of these fluctuations.
104 - F. Camilo 2007
We have used the Parkes radio telescope to study the polarized emission from the anomalous X-ray pulsar XTE J1810-197 at frequencies of 1.4, 3.2, and 8.4 GHz. We find that the pulsed emission is nearly 100% linearly polarized. The position angle of l inear polarization varies gently across the observed pulse profiles, varying little with observing frequency or time, even as the pulse profiles have changed dramatically over a period of 7 months. In the context of the standard pulsar rotating vector model, there are two possible interpretations of the observed position angle swing coupled with the wide profile. In the first, the magnetic and rotation axes are substantially misaligned and the emission originates high in the magnetosphere, as seen for other young radio pulsars, and the beaming fraction is large. In the second interpretation, the magnetic and rotation axes are nearly aligned and the line of sight remains in the emission zone over almost the entire pulse phase. We deprecate this possibility because of the observed large modulation of thermal X-ray flux. We have also measured the Faraday rotation caused by the Galactic magnetic field, RM = +77 rad/m^2, implying an average magnetic field component along the line of sight of 0.5 microG.
We present the earliest available soft X-ray observations of XTE J1810-187, the prototypical transient magnetar, obtained 75--84 days after its 2018 outburst with the Neutron Star Interior Composition Explorer (NICER). Using a series of observations covering eight days we find that its decreasing X-ray flux is well-described by either a blackbody plus power-law or a two-blackbody spectral model. The 2-10 keV flux of the source varied from (1.206+/-0.007)x10^{-10} to (1.125+/-0.004)x10^{-10} erg s^{-1} cm^{-2}, a decrease of about 7% within our observations and 44% from that measured 7-14 days after the outburst with NuSTAR. We confirm that the pulsed fraction and spin pulse phase of the neutron star are energy dependent up to at least 8 keV. Phase resolved spectroscopy of the pulsar suggests magnetospheric variations relative to the line of sight.
In 2003, the magnetar XTE J1810-197 started an outburst that lasted until early 2007. In the following 11 years, the source stayed in a quiescent/low activity phase. XTE J1810-197 is one of the closest magnetars, hence its X-ray properties can be stu died in detail even in quiescence and an extended monitoring has been carried out to study its long term timing and spectral evolution. Here, we report the results of new X-ray observations, taken between September 2017 and April 2018, with XMM-Newton, Chandra and Nicer. We derived a phase-connected timing solution yielding a frequency derivative of -9.26(6)x10^-14 Hz s-1. This value is consistent with that measured between 2009 and 2011, indicating that the pulsar spin-down rate remained quite stable during the long quiescent period. A spectral analysis of all the X-ray observations taken between 2009 and 2018 does not reveal significant spectral and/or flux variability. The spectrum of XTE J1810-197 can be described by the sum of two thermal components with temperatures of 0.15 and 0.3 keV, plus a power law component with photon index 0.6. We also found evidence for an absorption line at ~1.2 keV and width of 0.1 keV. Thanks to the long exposure time of the summed XMM-Newton observations, we could also carry out a phase-resolved spectral analysis for this source in quiescence. This showed that the flux modulation can be mainly ascribed to the the warmer of the two thermal components, whose flux varies by ~45 per cent along the pulse phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا