We calculate the form factor f_+(q^2) for B-meson semileptonic decay in unquenched lattice QCD with 2+1 flavors of light sea quarks. We use Asqtad-improved staggered light quarks and a Fermilab bottom quark on gauge configurations generated by the MILC Collaboration. We simulate with several light quark masses and at two lattice spacings, and extrapolate to the physical quark mass and continuum limit using heavy-light meson staggered chiral perturbation theory. We then fit the lattice result for f_+(q^2) simultaneously with that measured by the BABAR experiment using a parameterization of the form factor shape in q^2 which relies only on analyticity and unitarity in order to determine the CKM matrix element |V(ub)|. This approach reduces the total uncertainty in |V(ub)| by combining the lattice and experimental information in an optimal, model-independent manner. We find a value of |V(ub)| x 10^3 = 3.38 +/- 0.36.