ﻻ يوجد ملخص باللغة العربية
We have studied the X-ray properties of ageing historical core-collapse supernovae in nearby galaxies, using archival data from Chandra, XMM-Newton and Swift. We found possible evidence of a young X-ray pulsar in SN 1968D and in few other sources, but none more luminous than ~ a few 10^{37} erg/s. We compared the observational limits to the X-ray pulsar luminosity distribution with the results of Monte Carlo simulations for a range of birth parameters. We conclude that a pulsar population dominated by periods <~ 40 ms at birth is ruled out by the data.
Traditionally, studies aimed at inferring the distribution of birth periods of neutron stars are based on radio surveys. Here we propose an independent method to constrain the pulsar spin periods at birth based on their X-ray luminosities. In particu
We present results from an extensive set of one- and two-dimensional radiation-hydrodynamic simulations of the supernova core collapse, bounce, and postbounce phases, and focus on the protoneutron star (PNS) spin periods and rotational profiles as a
Wave dark matter ($psi$DM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and $psi$DM, focusing on the systematic changes of the centr
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of neutron star than the Kepler frequency/mass shedding
We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic h