ترغب بنشر مسار تعليمي؟ اضغط هنا

Piezoelectric and optical setup to measure an electrical field: Application to the longitudinal near-field generated by a tapered coax

77   0   0.0 ( 0 )
 نشر من قبل Sebastien Euphrasie
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 um in the direction of the electrical field. Simulations and experiments are presented.



قيم البحث

اقرأ أيضاً

118 - G. Pignol 2018
New sources of CP violation beyond the Standard Model of particle physics could be revealed in the laboratory by measuring a non-zero electric dipole moment (EDM) of a spin 1/2 particle such as the neutron. Despite the great sensitivity attained afte r 60 years of developments, the result of the experiments is still compatible with zero. Still, new experiments have a high discovery potential since they probe new physics at the multi-TeV scale, beyond the reach of direct searches at colliders. Progress in precision on the neutron EDM is limited by a systematic effect arising from the relativistic motional field $vec{E} times vec{v} / c^2$ experienced by the particles moving in the measurement chamber in combination with the residual magnetic gradients. This effect would normally forbid a significant increase of the size of the chamber, sadly hindering the increase of neutron statistics. We propose a new measurement concept to evade this limitation in a room-temperature experiment employing a mercury co-magnetometer. It consists ajusting the static magnetic field $B_0$ to a `magic value which cancels the false EDM of the mercury. The magic setting is $7.2,muT$ for a big cylindrical double-chamber of diameter $100$~cm.
We present a novel electrical technique to measure the tension of wires in multi-wire drift chambers. We create alternating electric fields by biasing adjacent wires on both sides of a test wire with a superposition of positive and negative DC voltag es on an AC signal ($V_{rm AC} pm V_{rm DC}$). The resulting oscillations of the wire will display a resonance at its natural frequency, and the corresponding change of the capacitance will lead to a measurable current. This scheme is scalable to multiple wires and therefore enables us to precisely measure the tension of a large number of wires in a short time. This technique can also be applied at cryogenic temperatures making it an attractive solution for future large time-projection chambers such as the DUNE detector. We present the concept, an example implementation and its performance in a real-world scenario and discuss the limitations of the sensitivity of the system in terms of voltage and wire length.
401 - C. Amsler , A. Ariga , T. Ariga 2012
We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equival ence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the anni- hilation vertex of antihydrogen atoms after their free fall in a horizontal vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle de- tectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.
96 - Z. Majka , R. Planeta , Z. Sosin 2018
The paper presents a novel instrumentation for rare events selection which was tested in our research of short lived super heavy elements production and detection. The instrumentation includes an active catcher multi elements system and dedicated ele ctronics. The active catcher located in the forward hemisphere is composed of 63 scintillator detection modules. Reaction products of damped collisions between heavy ion projectiles and heavy target nuclei are implanted in the fast plastic scintillators of the active catcher modules. The acquisition system trigger delivered by logical branch of the electronics allows to record the reaction products which decay via the alpha particle emissions or spontaneous fission which take place between beam bursts. One microsecond wave form signal from FADCs contains information on heavy implanted nucleus as well as its decays.
62 - A. Tantot , C. Bouard , R. Briche 2016
To investigate fractoluminescence in scintillating crystals used for particle detection, we have developed a multi-channel setup built around samples of double-cleavage drilled compression (DCDC) geometry in a controllable atmosphere. The setup allow s the continuous digitization over hours of various parameters, including the applied load, and the compressive strain of the sample, as well as the acoustic emission. Emitted visible light is recorded with nanosecond resolution, and crack propagation is monitored using infrared lighting and camera. An example of application to Bi4Ge3O12 (BGO) is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا