ﻻ يوجد ملخص باللغة العربية
The theoretical basis for a candidate variational principle for the information bottleneck (IB) method is formulated within the ambit of the generalized nonadditive statistics of Tsallis. Given a nonadditivity parameter $ q $, the role of the textit{additive duality} of nonadditive statistics ($ q^*=2-q $) in relating Tsallis entropies for ranges of the nonadditivity parameter $ q < 1 $ and $ q > 1 $ is described. Defining $ X $, $ tilde X $, and $ Y $ to be the source alphabet, the compressed reproduction alphabet, and, the textit{relevance variable} respectively, it is demonstrated that minimization of a generalized IB (gIB) Lagrangian defined in terms of the nonadditivity parameter $ q^* $ self-consistently yields the textit{nonadditive effective distortion measure} to be the textit{$ q $-deformed} generalized Kullback-Leibler divergence: $ D_{K-L}^{q}[p(Y|X)||p(Y|tilde X)] $. This result is achieved without enforcing any textit{a-priori} assumptions. Next, it is proven that the $q^*-deformed $ nonadditive free energy of the system is non-negative and convex. Finally, the update equations for the gIB method are derived. These results generalize critical features of the IB method to the case of Tsallis statistics.
We propose a new perspective on Turbulence using Information Theory. We compute the entropy rate of a turbulent velocity signal and we particularly focus on its dependence on the scale. We first report how the entropy rate is able to describe the dis
We establish for the first time heuristic correlations between harmonic space phase information and higher order statistics. Using the spherical full-sky maps of the cosmic microwave background as an example we demonstrate that known phase correlatio
Sine-Wiener noise is increasingly adopted in realistic stochastic modeling for its bounded nature. However, many features of the SW noise are still unexplored. In this paper, firstly, the properties of the SW noise and its integral process are explor
It is a well-known fact that the degree distribution (DD) of the nodes in a partition of a bipartite network influences the DD of its one-mode projection on that partition. However, there are no studies exploring the effect of the DD of the other par
Levy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we inves