ترغب بنشر مسار تعليمي؟ اضغط هنا

The quantum-classical transition in thermally seeded parametric downconversion

147   0   0.0 ( 0 )
 نشر من قبل Ivo Degiovanni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the pair of conjugated field modes obtained from parametric-downconversion as a convenient system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate intensity correlations, negativity and entanglement for the system in a thermal state and show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and downconversion photon number. We show that the transition from quantum to classical regime may be tuned by controlling the intensities of the seeds and detected by intensity measurements. Besides, we show that the thresholds are not affected by losses, which only modify the amount of nonclassicality. The multimode case is also analyzed in some detail.



قيم البحث

اقرأ أيضاً

We present the first experimental demonstration of ghost imaging realized with intense beams generated by a parametric downconversion interaction seeded with pseudo-thermal light. As expected, the real image of the object is reconstructed satisfying the thin-lens equation. We show that the experimental visibility of the reconstructed image is in accordance with the theoretically expected one.
We address parametric-downconversion seeded by multimode pseudo-thermal fields. We show that this process may be used to generate multimode pairwise correlated states with entanglement properties that can be tuned by controlling the seed intensities. Multimode pseudo-thermal fields seeded parametric-downconversion represents a novel source of correlated states, which allows one to explore the classical-quantum transition in pairwise correlations and to realize ghost imaging and ghost diffraction in regimes not yet explored by experiments.
The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition i s at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the quantum injected optical parametric amplification, that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS demonstration was carried out experimentally at room temperature with $Mgeq $ $10^{4}$. This result elicited an extended study on quantum cloning, quantum amplification and quantum decoherence. The related theory is outlined in the article where several experiments are reviewed such as the test on the no-signaling theorem and the dynamical interaction of the photon MQS with a Bose-Einstein condensate. In addition, the consideration of the Micro - Macro entanglement regime is extended into the Macro - Macro condition. The MQS interference patterns for large M were revealed in the experiment and the bipartite Micro-Macro entanglement was also demonstrated for a limited number of generated particles: $Mprecsim 12$. At last, the perspectives opened by this new method are considered in the view of further studies on quantum foundations and quantum measurement.
We study the process of seeded, or stimulated, third-order parametric down-conversion, as an extension of our previous work on spontaneous parametric downconversion (TOSPDC). We present general expressions for the spectra and throughputs expected for the cases where the seed field or fields overlap either only one or two of the TOSPDC modes, and also allow for both pump and seed to be either monochromatic or pulsed. We present a numerical study for a particular source design, showing that doubly-overlapped seeding can lead to a considerably greater generated flux as compared with singly-overlapped seeding. We furthermore show that doubly-overlapped seeding permits stimulated emission tomography for the reconstruction of the three-photon TOSPDC joint spectral intensity. We hope that our work will guide future experimental efforts based on the process of third-order parametric downconversion.
The quantum-classical limits for quantum tomograms are studied and compared with the corresponding classical tomograms, using two different definitions for the limit. One is the Planck limit where $hbar to 0$ in all $hbar $-dependent physical observa bles, and the other is the Ehrenfest limit where $hbar to 0$ while keeping constant the mean value of the energy.The Ehrenfest limit of eigenstate tomograms for a particle in a box and a harmonic oscillatoris shown to agree with the corresponding classical tomograms of phase-space distributions, after a time averaging. The Planck limit of superposition state tomograms of the harmonic oscillator demostrating the decreasing contribution of interferences terms as $hbar to 0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا