ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous mass current and textures of p-wave superfluids of trapped Fermionic atom gases at rest and under rotation

275   0   0.0 ( 0 )
 نشر من قبل Yasumasa Tsutsumi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is found theoretically based on the Ginzburg-Landau framework that p-wave superfluids of neutral atom gases in three dimension harmonic traps exhibit spontaneous mass current at rest, whose direction depends on trap geometry. Under rotation various types of the order parameter textures are stabilized, including Mermin-Ho and Anderson-Toulouse-Chechetkin vortices. In a cigar shape trap spontaneous current flows longitudial to the rotation axis and thus perpendicular to the ordinary rotational current. These features, spontaneous mass current at rest and texture formation, can be used as diagnoses for p-wave superfluidity.



قيم البحث

اقرأ أيضاً

145 - M. Iskin , C. J. Williams 2008
The local density approximation is used to study the ground state superfluid properties of harmonically trapped p-wave Fermi gases as a function of fermion-fermion attraction strength. While the density distribution is bimodal on the weakly attractin g BCS side, it becomes unimodal with increasing attraction and saturates towards the BEC side. This non-monotonic evolution is related to the topological gapless to gapped phase transition, and may be observed via radio-frequency spectroscopy since quasi-particle transfer current requires a finite threshold only on the BEC side.
205 - J. Levinsen , N. R. Cooper , 2008
We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the lifetime of a 3D superfluid, in particu lar, we show that it decays at the same rate as its interaction energy, thus precluding its equilibration before it decays. Then we proceed to study its stability in case when the superfluid is confined to 2D by means of an optical harmonic potential. We find that the relative stability is somewhat improved in 2D in the BCS regime, such that the decay rate is now slower than the appropriate interaction energy scale. The improvement in stability, however, is not dramatic and one probably needs to look for other mechanisms to suppress decay to create a long lived 2D p-wave fermionic superfluid.
We show that recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological $p$-wave superfluid of microwave-dressed polar molec ules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer $p$-wave superfluid of polar molecules in a bilayer geometry.
We consider a problem of non-adiabatic dynamics of a 2D fermionic system with $d+id$-wave symmetry of paring amplitude. Under the mean-field approximation, we determine the asymptotic behavior of the pairing amplitude following a sudden change of cou pling strength. We also study an extended $d+id$ pairing system for which the long-time asymptotic states of the pairing amplitude in the collisionless regime can be determined exactly. By using numerical methods, we have identified three non-equilibrium steady states described by different long-time asymptotes of the pairing amplitude for both the non-integrable and the integrab
The possible stable singular vortex (SV) and half-quantum vortex (HQV) of the superfluid $^3$He-A phase confined in restricted geometries are investigated. The associated low-energy excitations are calculated in connection with the possible existence of Majorana zero modes obeying non-Abelian statistics. The energetics between those vortices is carefully examined using the standard Ginzburg-Landau (GL) functional with a strong-coupling correction. The Fermi liquid effect, which is not included in the GL functional, is considered approximately within the London approach. This allows us to determine the stability regions in pressure, temperature, and applied field for SV and HQV. The existence of the Majorana zero mode and its statistics, either Abelian or non-Abelian under braiding of SVs, is studied by solving the Bogoliubov-de Gennes equation for spinful chiral p-wave superfluids at sufficiently low temperatures. We determined several conditions controllable external parameters for realizing the non-Abelian statistics of Majorana zero modes e.g., pressure, field direction, and strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا