ﻻ يوجد ملخص باللغة العربية
When an open system of classical point particles interacting by Newtonian gravity collapses and relaxes violently, an arbitrary amount of energy may in principle be carried away by particles which escape to infinity. We investigate here, using numerical simulations, how this released energy and other related quantities (notably the binding energy and size of the virialized structure) depends on the initial conditions, for the one parameter family of starting configurations given by randomly distributing N cold particles in a spherical volume. Previous studies have established that the minimal size reached by the system scales approximately as N^{-1/3}, a behaviour which follows trivially when the growth of perturbations (which regularize the singularity of the cold collapse in the infinite N limit) are assumed to be unaffected by the boundaries. Our study shows that the energy ejected grows approximately in proportion to N^{1/3}, while the fraction of the initial mass ejected grows only very slowly with N, approximately logarithmically, in the range of N simulated. We examine in detail the mechanism of this mass and energy ejection, showing explicitly that it arises from the interplay of the growth of perturbations with the finite size of the system. A net lag of particles compared to their uniform spherical collapse trajectories develops first at the boundaries and then propagates into the volume during the collapse. Particles in the outer shells are then ejected as they scatter through the time dependent potential of an already re-expanding central core. Using modified initial configurations we explore the importance of fluctuations at different scales, and discreteness (i.e. non-Vlasov) effects in the dynamics.
The field which binds a thermal fermionic cloud is defined as a Hartree integral upon its density. In turn, the density results from the field via a Thomas-Fermi occupation of the local phase space. This defines a complete theory of all properties an
The long timescale evolution of a self-gravitating system is generically driven by two-body encounters. In many cases, the motion of the particles is primarily governed by the mean field potential. When this potential is integrable, particles move on
A self-similar solution for time evolution of isothermal, self-gravitating viscous disks is found under the condition that $alpha equiv alpha (H/r)$ is constant in space (where $alpha$ is the viscosity parameter and $H/r$ is the ratio of a half-thick
Externally driven interstellar turbulence plays an important role in shaping the density structure in molecular clouds. Here we study the dynamical role of internally driven turbulence in a self-gravitating molecular cloud core. Depending on the init
We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regul