ﻻ يوجد ملخص باللغة العربية
We consider how, for quasi-degenerate neutrinos with tri-bi-maximal mixing at a high-energy scale, the mixing angles are affected by radiative running from high to low-energy scales in a supersymmetric theory. The limits on the high-energy scale that follow from consistency with the observed mixing are determined. We construct a model in which a non-Abelian discrete family symmetry leads both to a quasi-degenerate neutrino mass spectrum and to near tri-bi-maximal mixing.
The observed neutrino mixing, having a near maximal atmospheric neutrino mixing angle and a large solar mixing angle, is close to tri-bi-maximal, putting leptonic mixing in contrast with the small mixing of the quark sector. We discuss a model in whi
The observed neutrino mixing, having a near maximal atmospheric neutrino mixing angle and a large solar mixing angle, is close to tri-bi-maximal. We argue that this structure suggests a family symmetric origin in which the magnitude of the mixing ang
In the limit of an approximate $mu-tau$ symmetry in the neutrino mass matrix, we explore deviations to the Tri-Bi-Maximal mixing pattern in the neutrino sector. We consider two different ansatzes for the corrected pattern to predict the current value
The Tri-Bi-Maximal pattern has been long investigated as the symmetric scenario that lies behind the neutrino mixing matrix. It predicts a null reactor angle and hence forbids $CP$ violation in the lepton sector, which is in contrast to the current e
We construct lepton flavour models based on two $A_4$ modular symmetries. The two $A_4$ are broken by a bi-triplet field to the diagonal $A_4$ subgroup, resulting in an effective modular $A_4$ flavour symmetry with two moduli. We employ these moduli