ﻻ يوجد ملخص باللغة العربية
We report on measurements of the in-plane magnetic penetration lambda_{ab} in the optimally doped cuprate superconductor (BiPb)_2(SrLa)_2CuO_6+delta (OP Bi2201) by means of muon-spin rotation (muSR). We show that in unconventional $d-$wave superconductors (like OP Bi2201), muSR experiments conducted in various magnetic fields allow to evaluate the zero-field magnetic penetration depth lambda_0, which relates to the zero-field superfluid density in terms of rho_sproptolambda_0^-2.
We argue that claims about magnetic field dependence of the magnetic field penetration depth lambda, which were made on the basis of moun-spin-rotation studies of some superconductors, originate from insufficient accuracy of theoretical models employ
We show that the low-energy density of quasiparticle states in the mixed state of ultra-clean d-wave superconductors is characterized by pronounced quantum oscillations in the regime where the cyclotron frequency $hbaromega_c ll Delta_0$, the d-wave
Muon-spin rotation (muSR) experiments are often used to study the magnetic field distribution in type-II superconductors in the vortex state. Based on the determination of the magnetic penetration depth it is frequently speculated---also controversia
Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn$_{5}$ (T$_{c}$=2.3 K). Superconductivity develops from a state with slow ($hbarGamma$=0.3 $pm$ 0.15 meV) commensurate (${bf{Q_0}
We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor Sr$_x$Bi$_2$Se$_3$ with nominal concentrations $x=0.15$ and $0.18$ ($T_c sim 3$ K). The TF spectra ($B= 10$ mT), measured after coolin