ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural relaxation effects on interface and transport properties of Fe/MgO(001) tunnel junctions

291   0   0.0 ( 0 )
 نشر من قبل Mebarek Alouani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiaobing Feng




اسأل ChatGPT حول البحث

The interface structure of Fe/MgO(100) magnetic tunnel junctions predicted by density functional theory (DFT) depends significantly on the choice of exchange and correlation functional. Bader analysis reveals that structures obtained by relaxing the cell with the local spin-density approximation (LSDA) display a different charge transfer than those relaxed with the generalized gradient approximation (GGA). As a consequence, the electronic transport is found to be extremely sensitive to the interface structure. In particular, the conductance for the LSDA-relaxed geometry is about one order of magnitude smaller than that of the GGA-relaxed one. The high sensitivity of the electronic current to the details of the interface might explain the discrepancy between the experimental and calculated values of magnetoresistance.



قيم البحث

اقرأ أيضاً

Giant tunnel magnetoresistance (TMR) ratios of 417% at room temperature (RT) and 914% at 3 K were demonstrated in epitaxial Fe/MgO/Fe(001) exchanged-biased spin-valve magnetic tunnel junctions (MTJs) by tuning growth conditions for each layer, combin ing sputter deposition for the Fe layers, electron-beam evaporation of the MgO barrier, and barrier interface tuning. Clear TMR oscillation as a function of the MgO thickness with a large peak-to-valley difference of ~80% was observed when the layers were grown on a highly (001)-oriented Cr buffer layer. Specific features of the observed MTJs are symmetric differential conductance (dI/dV) spectra for the bias polarity and plateau-like deep local minima in dI/dV (parallel configuration) at |V| = 0.2~0.5 V. At 3K, fine structures with two dips emerge in the plateau-like dI/dV, reflecting highly coherent tunneling through the Fe/MgO/Fe. We also observed a 496% TMR ratio at RT by a 2.24-nm-thick-CoFe insertion at the bottom-Fe/MgO interface.
In this work, we calculate with ab initio methods the current-voltage characteristics for ideal single- and double-barrier Fe/MgO (001) magnetic tunnel junctions. The current is calculated in the phase-coherent limit by using the recently developed S MEAGOL code, combining the nonequilibrium Green function formalism with density-functional theory. In general we find that double-barrier junctions display a larger magnetoresistance, which decays with bias at a slower pace than their single-barrier counterparts. This is explained in terms of enhanced spin filtering from the middle Fe layer sandwiched in between the two MgO barriers. In addition, for double-barrier tunnel junctions, we find a well defined peak in the magnetoresistance at a voltage of V=0.1 V. This is the signature of resonant tunneling across a majority quantum well state. Our findings are discussed in relation to recent experiments.
398 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate in a self-consistent way the ballistic transmission as a function of energy of one Fe/MgO (001) single-barrier and one double-barrier tunnel junction, relating them to their electronic structure. The transmission sp ectra of each kind of junction is calculated at different applied bias voltages. We focus on the impact that bias has on the resonant tunneling mediated by surface and quantum well states. The calculations are done in the coherent regime, using a combination of density functional theory and non-equilibrium Greens functions, as implemented in the {it ab initio} code {it SMEAGOL}. We conclude that, for both kinds of junction, the transmission functions depend on the applied bias voltage. In the single-barrier junction, transport mediated by resonant Fe minority surface states is rapidly destroyed by bias. In the double-barrier junction, the appearance of resonant tunneling through majority quantum well states is strongly affected by bias.
216 - A. Hallal , B. Dieny , M. Chshiev 2014
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc ulation technique, that while the impurity near the interface has a drastic effect in decreasing the perpendicular magnetic anisotropy (PMA), its position within the bulk allows maintaining high surface PMA. Moreover, the effective magnetic anisotropy has a strong tendency to go from in-plane to out-of-plane character as a function of Cr and V concentration favoring out-of-plane magnetization direction for ~1.5 nm thick Fe layers at impurity concentrations above 20 %. At the same time, spin polarization is not affected and even enhanced in most situations favoring an increase of tunnel magnetoresistance (TMR) values.
We investigated the effect of a Mg-Al layer insertion at the bottom interface of epitaxial Fe/$MgAl_{2}O_{4}$/Fe(001) magnetic tunnel junctions (MTJs) on their spin-dependent transport properties. The tunnel magnetoresistance (TMR) ratio and differen tial conductance spectra for the parallel magnetic configuration exhibited clear dependence on the inserted Mg-Al thickness. A slight Mg-Al insertion (thickness < 0.1 nm) was effective for obtaining a large TMR ratio above 200% at room temperature and observing a distinct local minimum structure in conductance spectra. In contrast, thicker Mg-Al (> 0.2 nm) induced a reduction of TMR ratios and featureless conductance spectra, indicating a degradation of the bottom-Fe/$MgAl_{2}O_{4}$ interface. Therefore, a minimal Mg-Al insertion was found to be effective to maximize the TMR ratio for a sputtered $MgAl_{2}O_{4}$-based MTJ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا