ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of a multichannel 127 degree cylindrical spectrometer for sputtered ions

320   0   0.0 ( 0 )
 نشر من قبل Deyang Yu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Deyang Yu




اسأل ChatGPT حول البحث

Design details of a 127 degree electrostatic cylindrical spectrometer equipped with a position-sensitive micro-channel plate detector for measuring the sputtered ions in collisions of highly charged ions with solid surface is described. The nonlinear relationship between the point of fall versus the ionic energy, the blurring of the point of fall caused by the divergence of incident angle and the finite entrance aperture, the transform from a position spectrum to an energy spectrum, as well as the influence of the fringing fields are discussed.



قيم البحث

اقرأ أيضاً

130 - D. Maire , J. Billard , G. Bosson 2013
In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chambe r), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nuclear recoil detector principle. The instrument is presented with the associated method to measure the neutron energy. This article emphasizes the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV with the IRSN facility AMANDE.
We present a conceptual design for a polarized $^3$He target for Jefferson Labs CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell inside the CLAS12 5 T solenoid. By transferring this gas to a 20 cm long, 5 K target cell, a target thickness of $3 times 10^{21}$ $^3$He/cm$^2$ will be produced, reaching the detectors specified maximum luminosity with a beam current of 2.5 $mu A$.
118 - K. Murray , J. Dilling , R. Gornea 2019
The search for neutrinoless double beta decay requires increasingly advanced methods of background reduction. A bold approach to solving this problem, in experiments using Xe-136, is to extract and identify the daughter Ba-136 ion produced by double beta decay. Tagging events in this manner allows for a virtually background-free verification of double beta decay signals. Various approaches are being pursued by the nEXO collaboration to achieve Ba-tagging. A Multi-Reflection Time-of-Flight Mass Spectrometer (MR TOF) has been designed and optimized as one of the ion-identification methods, where it will investigate the ion-extraction efficiency, as well as provide further identification of the Ba isotope. The envisioned mode of operation allows the MR TOF to achieve a quickly adjustable mass-range and resolution, with simulations suggesting that a mass-resolving power of 140,000 is within reach. This work will discuss the MR TOF design and the methods employed to simulate and optimize it.
We present a compact design for a velocity-map imaging spectrometer for energetic electrons and ions. The standard geometry by Eppink and Parker [A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)] is augmented by just two extend ed electrodes so as to realize an additional einzel lens. In this way, for a maximum electrode voltage of 7 kV we experimentally demonstrate imaging of electrons with energies up to 65 eV. Simulations show that energy acceptances of <270 and <1,200 eV with an energy resolution of dE / E <5% are achievable for electrode voltages of <20 kV when using diameters of the position-sensitive detector of 42 and 78 mm, respectively.
The cold neutron multiplexing secondary spectrometer CAMEA (Continuous Angle Multiple Energy Analysis) was commissioned at the Swiss spallation neutron source SINQ at the Paul Scherrer Institut at the end of 2018. The spectrometer is optimised for an efficient data collection in the horizontal scattering plane, allowing for detailed and rapid mapping of excitations under extreme conditions. The novel design consists of consecutive, upward scattering analyzer arcs underneath an array of position sensitive detectors mounted inside a low permeability stainless-steel vacuum vessel. The construction of the worlds first continuous angle multiple energy analysis instrument required novel solutions to many technical challenges, including analyzer mounting, vacuum connectors, and instrument movement. These were solved by extensive prototype experiments and in-house developments. Here we present a technical overview of the spectrometer describing in detail the engineering solutions and present our first experimental data taken during the commissioning. Our results demonstrate the tremendous gains in data collection rate for this novel type of spectrometer design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا