ﻻ يوجد ملخص باللغة العربية
Particle-wave duality suggests we think of electrons as waves stretched across a sample, with wavevector k proportional to their momentum. Their arrangement in k-space, and in particular the shape of the Fermi surface, where the highest energy electrons of the system reside, determine many material properties. Here we use a novel extension of Fourier transform scanning tunneling microscopy to probe the Fermi surface of the strongly inhomogeneous Bi-based cuprate superconductors. Surprisingly, we find that rather than being globally defined, the Fermi surface changes on nanometer length scales. Just as shifting tide lines expose variations of water height, changing Fermi surfaces indicate strong local doping variations. This discovery, unprecedented in any material, paves the way for an understanding of other inhomogeneous characteristics of the cuprates, like the pseudogap magnitude, and highlights a new approach to the study of nanoscale inhomogeneity in general.
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the mu
Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogene
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here we employ magnetic-field-dependent scanning tunneling micro
We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_2As_2 (transition temperature (Tc = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the
In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revea