ﻻ يوجد ملخص باللغة العربية
The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|~ g^2 T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bodeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far. In this work we provide a complementary, more analytic approach based on Dyson-Schwinger equations. Using methods known from stochastic quantisation, we recast Bodekers Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally Dyson-Schwinger equations are derived.
We exactly solve Dyson-Schwinger equations for a massless quartic scalar field theory. n-point functions are computed till n=4 and the exact propagator computed from the two-point function. The spectrum is so obtained, being the same of a harmonic os
We apply the projection operator method (POM) to $phi^4$ theory and derive both quantum and semiclassical equations of motion for the soft modes. These equations have no time-convolution integral term, in sharp contrast with other well-known results
Using a technique devised by Bender, Milton and Savage, we derive the Dyson-Schwinger equations for quantum chromodynamics in differential form. We stop our analysis to the two-point functions. The t~Hooft limit of color number going to infinity is d
In this talk, we review some of the current efforts to understand the phenomenon of chiral symmetry breaking and the generation of a dynamical quark mass. To do that, we will use the standard framework of the Schwinger-Dyson equations. The key ingred
We review the status of calculations of Yang-Mills Green functions from Dyson-Schwinger equations. The role of truncations is discussed and results for the four-gluon vertex are presented.