ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and Short-time Dynamics in Suspensions of Charged Silica Spheres in the entire Fluid Regime

177   0   0.0 ( 0 )
 نشر من قبل Jacek Gapinski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental study of short-time diffusion properties in fluid-like suspensions of monodisperse charge-stabilized silica spheres suspended in DMF. The static structure factor S(q), the short-time diffusion function, D(q), and the hydrodynamic function, H(q), in these systems have been probed by combining X-ray photon correlation spectroscopy experiments with static small-angle X-ray scattering. Our experiments cover the full liquid-state part of the phase diagram, including deionized systems right at the liquid-solid phase boundary. We show that the dynamic data can be consistently described by the renormalized density fluctuation expansion theory of Beenakker and Mazur over a wide range of concentrations and ionic strengths. In accord with this theory and Stokesian dynamics computer simulations, the measured short-time properties cross over monotonically, with increasing salt content, from the bounding values of salt-free suspensions to those of neutral hard spheres. Moreover, we discuss an upper bound for the hydrodynamic function peak height of fluid systems based on the Hansen-Verlet freezing criterion.



قيم البحث

اقرأ أيضاً

103 - Thomas Palberg , Patrick Wette , 2015
The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from th is data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charged spheres and one binary mixture. We utilize a simple extrapolation scheme and interpret our findings in view of Turnbulls empirical rule. Our first estimates for the reduced interfacial free energy, $sigma_{0,bcc}$, between coexisting equilibrium uid and bcc-crystal phases are on the order of a few $k_BT$. Their values are not correlated to any of the electrostatic interaction parameters but rather show a systematic decrease with increasing size polydispersity and a lower value for the mixture as compared to the pure components. At the same time, $sigma_0$ also shows an approximately linear correlation to the entropy of freezing. The equilibrium interfacial free energy of strictly monodisperse charged spheres may therefore be still greater.
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in suspensions of charge-stabilized colloidal spheres. In simulation and theory, the spheres interact by a hard-core plus screened Coulomb pair potenti al. Intermediate and self-intermediate scattering functions are calculated by accelerated Stokesian Dynamics simulations where hydrodynamic interactions (HIs) are fully accounted for. The study spans the range from the short-time to the colloidal long-time regime. Additionally, Brownian Dynamics simulation and mode-coupling theory (MCT) results are generated where HIs are neglected. It is shown that HIs enhance collective and self-diffusion at intermediate and long times, whereas at short times self-diffusion, and for certain wavenumbers also collective diffusion, are slowed down. MCT significantly overestimate the slowing influence of dynamic particle caging. The simulated scattering functions are in decent agreement with our dynamic light scattering (DLS) results for suspensions of charged silica spheres. Simulation and theoretical results are indicative of a long-time exponential decay of the intermediate scattering function. The approximate validity of a far-reaching time-wavenumber factorization of the scattering function is shown to be a consequence of HIs. Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function and the particle mean squared displacement (MSD). Since self-diffusion is not assessed in DLS measurements, a method to deduce the MSD approximately in DLS is theoretically validated.
Using super-heterodyne Doppler velocimetry with multiple scattering correction, we extend the opti-cally accessible range of concentrations in experiments on colloidal electro-kinetics. We here meas-ured the electro-phoretic mobility and the DC condu ctivity of aqueous charged sphere suspensions covering about three orders of magnitude in particle concentrations and transmissions as low as 40%. The extended concentration range for the first time allows the demonstration of a non-monotonic con-centration dependence of the mobility for a single particle species. Our observations reconcile previ-ous experimental observations made on other species over restricted concentration ranges. We com-pare our results to state of the art theoretical calculations using a constant particle charge and the carefully determined experimental boundary conditions as input. In particular, we consider so-called realistic salt free conditions, i.e. we respect the release of counter-ions by the particles, the solvent hydrolysis and the formation of carbonic acid from dissolved neutral CO2. We also compare to previ-ous results obtained under similarly well-defined conditions. This allows identification of three dis-tinct regions of differing density dependence. An ascent during the built up of double layer overlap which is not expected by theory, an extended plateau region in quantitative agreement with theoretical expectation based on a constant effective charge and a sudden decrease which occurs way before the expected gradual decrease. Our observations suggest a relation of the non-monotonic behavior to a decrease of particle charge, and we tentatively discuss possibly underlying mechanisms.
160 - M. Aichele , J. Baschnagel 2001
Whereas the first part of this paper dealt with the relaxation in the beta-regime, this part investigates the final (alpha) relaxation of a simulated polymer melt consisting of short non-entangled chains above the critical temperature Tc of mode-coup ling theory (MCT). We monitor the intermediate incoherent as well as the coherent chain and coherent melt scattering functions over a wide range of wave numbers q. Upon approaching Tc the coherent alpha-relaxation time of the melt increases strongly close to the maximum of the static structure factor of the melt. At q corresponding to the radius of gyration of the chain the melt relaxation time exhibits another maximum. The temperature dependence of the relaxation times is well described by a power-law with a q-dependent exponent in an intermediate temperature range. The time-temperature superposition principle of MCT is clearly bourne out in the whole range of wave numbers. An analysis of the alpha-decay using Kohlrausch-Williams-Watts (KWW) functions reveals that the collective melt KWW-stretching exponent and KWW-relaxation times are modulated with the structure factor. Furthermore, both incoherent and coherent KWW-times approach the large-q prediction of MCT at q comparable to the maximum of the structure factor. At small q a power law with exponent -3 is found for the coherent chain KWW-times similar to that of recent experiments.
100 - M. Aichele , J. Baschnagel 2001
We report results of molecular-dynamics simulations of a model polymer melt consisting of short non-entangled chains in the supercooled state above the critical temperature of mode-coupling theory (MCT). To analyse the dynamics of the system we compu ted the incoherent, collective chain and melt intermediate scattering functions as well as the Van Hove correlation functions. We find good evidence for the space-time factorization theorem of MCT. From the critical amplitudes we could derive typical length scales of the beta-dyamics. In an extensive quantitative analysis the leading order description of MCT was found to be accurate in the central beta-regime. Higher order corrections extend the validity of the MCT approximation to a greater time window. Indications of polymer specific effects on the length scale of the chains radius of gyration are visible in the beta-coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا