ﻻ يوجد ملخص باللغة العربية
The classical asymptotic equipartition property is the statement that, in the limit of a large number of identical repetitions of a random experiment, the output sequence is virtually certain to come from the typical set, each member of which is almost equally likely. In this paper, we prove a fully quantum generalization of this property, where both the output of the experiment and side information are quantum. We give an explicit bound on the convergence, which is independent of the dimensionality of the side information. This naturally leads to a family of Renyi-like quantum conditional entropies, for which the von Neumann entropy emerges as a special case.
Information theoretic ideas have provided numerous insights in the progress of fundamental physics, especially in our pursuit of quantum gravity. In particular, the holographic entanglement entropy is a very useful tool in studying AdS/CFT, and its e
A language L has a property tester if there exists a probabilistic algorithm that given an input x only asks a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it i
We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinel
We present a scheme to prepare quantum correlated states of two mechanical systems based on the pouring of pre-available all-optical entanglement into the state of two micro-mirrors belonging to remote and non-interacting optomechanical cavities. We