ﻻ يوجد ملخص باللغة العربية
At high area fractions, monolayers of colloidal dimer particles form a degenerate crystal (DC) structure in which the particle lobes occupy triangular lattice sites while the particles are oriented randomly along any of the three lattice directions. We report that dislocation glide in DCs is blocked by certain particle orientations. The mean number of lattice constants between such obstacles is 4.6 +/- 0.2 in experimentally observed DC grains and 6.18 +/- 0.01 in simulated monocrystalline DCs. Dislocation propagation beyond these obstacles is observed to proceed through dislocation reactions. We estimate that the energetic cost of dislocation pair separation via such reactions in an otherwise defect free DC grows linearly with final separation, hinting that the material properties of DCs may be dramatically different from those of 2-D crystals of spheres.
The analytical expressions for the time-dependent cross-correlations of the translational and rotational Brownian displacements of a particle with arbitrary shape are derived. The reference center is arbitrary, and the reference frame is such that th
Colloidal crystals formed by size-asymmetric binary particles co-assemble into a wide variety of colloidal compounds with lattices akin to ionic crystals. Recently, a transition from a compound phase with a sublattice of small particles to a metal-li
Sublattice melting is the loss of order of one lattice component in binary or ternary ionic crystals upon increase in temperature. A related transition has been predicted in colloidal crystals. To understand the nature of this transition, we study de
Asymmetrically charged, nonspherical colloidal particles in general perform complex rotations and oblique motions under an electric field. The interplay of electrostatic and hydrodynamic forces complicate the prediction of these motions. We demonstra
Whereas disclination defects are energetically prohibitive in two-dimensional flat crystals, their existence is necessary in crystals with spherical topology, such as viral capsids, colloidosomes or fullerenes. Such a geometrical frustration gives ri