ﻻ يوجد ملخص باللغة العربية
We study Andreev reflection in a normal conductor-molecule-superconductor junction using a first principles approach. In particular, we focus on a family of molecules consisting of a molecular backbone and a weakly coupled side group. We show that the presence of the side group can lead to a Fano resonance in the Andreev reflection. We use a simple theoretical model to explain the results of the numerical calculations and to make predictions about the possible sub-gap resonance structures in the Andreev reflection coefficient.
Andreev reflection in graphene is special since it can be of two types- retro or specular. Specular Andreev reflection (SAR) dominates when the position of the Fermi energy in graphene is comparable to or smaller than the superconducting gap. Bilayer
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides
We show experimentally that in nanometer scaled superconductor/normal metal hybrid devices and in a small window of contact resistances, crossed Andreev reflection (CAR) can dominate the nonlocal transport for all energies below the superconducting g
We report the study of ballistic transport in normal metal/graphene/superconductor junctions in edge-contact geometry. While in the normal state, we have observed Fabry-P{e}rot resonances suggesting that charge carriers travel ballistically, the supe
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to non-magnetic disorder. When superconductivity is induced in these helical states, they are