ﻻ يوجد ملخص باللغة العربية
A method for solving model nonlinear equations describing plasma oscillations in the presence of viscosity and resistivity is given. By first going to the Lagrangian variables and then transforming the space variable conveniently, the solution in parametric form is obtained. It involves simple elementary functions. Our solution includes all known exact solutions for an ideal cold plasma and a large class of new ones for a more realistic plasma. A new nonlinear effect is found of splitting of the largest density maximum, with a saddle point between the peaks so obtained. The method may sometimes be useful where Inverse Scattering fails.
New non-linear, spatially periodic, long wavelength electrostatic modes of an electron fluid oscillating against a motionless ion fluid (Langmuir waves) are given, with viscous and resistive effects included. The cold plasma approximation is adopted,
The equations describing planar magnetoacoustic waves of permanent form in a cold plasma are rewritten so as to highlight the presence of a naturally small parameter equal to the ratio of the electron and ion masses. If the magnetic field is not near
In this study, the evolution of a highly unstable m = 1 resistive tearing mode, leading to plasmoid formation in a Harris sheet is studied in the framework of full MHD model using the NIMROD simulation. Following the initial nonlinear growth of the p
We generalize the textbook Kronig-Penney model to realistic conditions for a quantum-particle moving in the quasi-one-dimensional (quasi-1D) waveguide, where motion in the transverse direction is confined by a harmonic trapping potential. Along the w
We study neutrino oscillations in space within a realistic model in which both the source and the target are considered to be stationary having Gaussian-form localizations. The model admits an exact analytic solution in field theory which may be expr