ﻻ يوجد ملخص باللغة العربية
We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect.
Helicity-dependent photocurrent delta-I has been detected successfully under experimental configuration that a circularly polarized light beam is impinged with a right angle on a cleaved sidewall of the Fe/x-AlOx/GaAs-based n-i-p double-heterostructu
This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and p
We numerically demonstrate that a planar slab made of magnetic Weyl semimetal (a class of topological materials) can emit high-purity circularly polarized (CP) thermal radiation over a broad mid- and long-wave infrared wavelength range for a signific
We introduce a solid material that is itself invisible, possessing identical electromagnetic properties as air (i.e. not a cloak) at a desired frequency. Such a material could provide improved mechanical stability, electrical conduction and heat diss
Nonlinear optical media that are normally dispersive, support a new type of localized (nondiffractive and nondispersive) wavepackets that are X-shaped in space and time and have slower than exponential decay. High-intensity X-waves, unlike linear one