ﻻ يوجد ملخص باللغة العربية
We present new data on the pressure dependence at 300 K of the optical reflectivity of CeTe$_3$, which undergoes a charge-density-wave (CDW) phase transition well above room temperature. The collected data cover an unprecedented broad spectral range from the infrared up to the ultraviolet, which allows a robust determination of the gap as well as of the fraction of the Fermi surface affected by the formation of the CDW condensate. Upon compressing the lattice there is a progressive closing of the gap inducing a transfer of spectral weight from the gap feature into the Drude component. At frequencies above the CDW gap we also identify a power-law behavior, consistent with findings along the $R$Te$_3$ series (i.e., chemical pressure) and suggestive of a Tomonaga-Luttinger liquid scenario at high energy scales. This newest set of data is placed in the context of our previous investigations of this class of materials and allows us to revisit important concepts for the physics of CDW state in layered-like two-dimensional systems.
We provide optical reflectivity data collected over a broad spectral range and as a function of temperature on the ErTe$_3$ and HoTe$_3$ materials, which undergo two consecutive charge-density-wave (CDW) phase transitions at $T_{CDW1}$= 265 and 288 K
We performed optical spectroscopy measurement on single crystal of CeTe$_3$, a rare-earth element tri-telluride charge density wave (CDW) compound. The optical spectra are found to display very strong temperature dependence. Besides a large and prono
We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pres
We report the pressure dependence of the optical response of LaTe$_2$, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pre
We present a state-of-the-art x-ray diffraction study of the charge density wave order in 1T-TaS2 as a function of temperature and pressure. Our results prove that the charge density wave, which we characterize in terms of wave vector, amplitude and