ﻻ يوجد ملخص باللغة العربية
We address consequences of strong tensor and weak spin-orbit terms in the local energy density functional, resulting from fits to the $f_{5/2} - f_{7/2}$ splittings in $^{40}$Ca, $^{48}$Ca, and $^{56}$Ni. In this study, we focus on nuclear binding energies. In particular, we show that the tensor contribution to the binding energies exhibits interesting topological features closely resembling that of the shell-correction. We demonstrate that in the extreme single-particle scenario at spherical shape, the tensor contribution shows tensorial magic numbers equal to $N(Z)$=14, 32, 56, and 90, and that this structure is smeared out due to configuration mixing caused by pairing correlations and migration of proton/neutron sub-shells with neutron/proton shell filling. Based on a specific Skyrme-type functional SLy4$_T$, we show that the proton tensorial magic numbers shift with increasing neutron excess to $Z$=14, 28, and 50.
Single particle spin-orbit interaction energy problem in nuclear shell structure is solved through negative harmonic oscillator in the self-similar-structure shell model (SSM) [4] and considering quarks contributions on single particle spin and orbit
Background: The half-life of the famous $^{14}$C $beta$ decay is anomalously long, with different mechanisms: the tensor force, cross-shell mixing, and three-body forces, proposed to explain the cancellations that lead to a small transition matrix el
The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interactions approach formu
We have systematically investigated the excitation spectra of $p$-shell hypernuclei within the shell model based on the nucleon-nucleon and hyperon-nucleon interactions. For the effective nucleon-nucleon interaction, we adopt the Gogny force instead
The Self-similar-structure shell model (SSM) comes from the evolution of the conventional shell model (SM) and keeps the energy level of SM single particle harmonic oscillation motion. In SM, single particle motion is the positive harmonic oscillatio