ترغب بنشر مسار تعليمي؟ اضغط هنا

Narrow absorptive resonances in a four-level atomic system

257   0   0.0 ( 0 )
 نشر من قبل Mark Bason
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of a control beam on a Lambda electromagnetically induced transparency (EIT) system in 87Rb. The control beam couples one ground state to another excited state forming a four level N-system. Phase coherent beams to drive the N-system are produced using a double injection scheme. We show that the control beam can be used to Stark shift or split the EIT resonance. Finally, we show that the when the control beam is on-resonance one observes a Doppler-free and sub-natural absorptive resonance with a width of order 100 kHz. Crucially, this narrow absorptive resonance only occurs when atoms with a range of velocities are present, as is the case in a room temperature vapour.



قيم البحث

اقرأ أيضاً

In a recent publication [Phys. Rev. A 79, 065602 (2009)] it was shown that an avoided-crossing resonance can be defined in different ways, according to level-structural or dynamical aspects, which do not coincide in general. Here a simple $3$-level s ystem in a $Lambda$ configuration is discussed, where the difference between both definitions of the resonance may be observed. We also discuss the details of a proposed experiment to observe this difference, using microwave fields coupling hyperfine magnetic sublevels in alkali atoms.
We report the experimental observations on the simultaneous EIT effects for probe and trigger fields (double EIT) as well as the large cross-phase modulation (XPM) between the two fields in a four-level tripod EIT system of the D1 line of 87Rb atoms. The XPM coefficients (larger than 2*10-5cm2/W) and the accompanying transmissions (higher than 60%) are measured at slightly detuning of the probe field from the exact EIT resonance condition. The presented system can be applied in the recently proposed quantum information processing with weak cross-Kerr nonlinearities.
We explore the coherent control of nonlinear absorption of intense laser fields in four-level atomic systems. For instance, in a four-level ladder system, a coupling field creates electromagnetically induced transparency (EIT) with Aulter-Townes doub let for the probe field while the control field is absent. A large absorption peak appears at resonance as the control field is switched on. We show how such a large absorption leads to optical switching. Further, this large absorption gets diminished and a transparency window appears due to the saturation effects as the strength of the probe field is increased. We further demonstrate that the threshold of the optical bistability can be modified by suitable choices of the coupling and the control fields. In a four-level Y-type configuration, the effect of the control field on saturable absorption (SA) and reverse saturable absorption (RSA) is highlighted in the context of nonlinear absorption of the probe field. We achieve RSA and SA in a simple atomic system just by applying a control field.
100 - A. Lezama , R. Rebhi , A. Kastberg 2015
The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to spontaneous Raman transitions. We also discuss the possibility to experimentally observe these predicted differences for the commonly encountered case where the laser drive has excess noise in its phase quadrature.
135 - I. I. Beterov , M. Saffman 2015
We calculate interspecies Rydberg-Rydberg interaction strengths for the heavy alkalis Rb and Cs. The presence of strong Forster resonances makes interspecies coupling a promising approach for long range entanglement generation. We also provide an ove rview of the strongest Forster resonances for Rb-Rb and Cs-Cs using different principal quantum numbers for the two atoms. We show how interspecies coupling can be used for high fidelity quantum non demolition state measurements with low crosstalk in qubit arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا