ﻻ يوجد ملخص باللغة العربية
We compare the dynamics of maximal three-dimensional gauged supergravity in appropriate truncations with the equations of motion that follow from a one-dimensional E10/K(E10) coset model at the first few levels. The constant embedding tensor, which describes gauge deformations and also constitutes an M-theoretic degree of freedom beyond eleven-dimensional supergravity, arises naturally as an integration constant of the geodesic model. In a detailed analysis, we find complete agreement at the lowest levels. At higher levels there appear mismatches, as in previous studies. We discuss the origin of these mismatches.
We find a large class of supersymmetric domain wall solutions from six-dimensional $N=(2,2)$ gauged supergravity with various gauge groups. In general, the embedding tensor lives in $mathbf{144}_c$ representation of the global symmetry $SO(5,5)$. We
We continue the study of supersymmetric domain wall solutions in six-dimensional maximal gauged supergravity. We first give a classification of viable gauge groups with the embedding tensor in $mathbf{5}^{+7}$, $bar{mathbf{5}}^{+3}$, $mathbf{10}^{-1}
In this paper we investigate in detail the correspondence between E10 and Romans massive deformation of type IIA supergravity. We analyse the dynamics of a non-linear sigma model for a spinning particle on the coset space E10/K(E10) and show that it
States on the Coulomb branch of N=4 super-Yang-Mills theory are studied from the point of view of gauged supergravity in five dimensions. These supersymmetric solutions provide examples of consistent truncation from type IIB supergravity in ten dimen
We argue that recent results in string perturbation theory indicate that the four-graviton amplitude of four-dimensional N=8 supergravity might be ultraviolet finite up to eight loops. We similarly argue that the h-loop M-graviton amplitude might be finite for h<7+M/2.