ﻻ يوجد ملخص باللغة العربية
We study the time variability and spectral evolution of the Black Hole Candidate source XTE J1650-500 using the BeppoSax wide energy range (0.12-200 keV) observations performed during the 2001 X-ray outburst. The source evolves from a low/hard state (LHS) toward a high/soft state (HSS). In all states the emergent photon spectrum is described by the sum of Comptonization and soft (disk) blackbody components. In the LHS, the Comptonization component dominates in the resulting spectrum. On the other hand, during the HSS the soft (disk) component is already dominant. In this state the Comptonization part of the spectrum is much softer than that in the LHS (photon index is ~ 2.4 in the HSS vs. that is ~1.7 in the LHS). In the BeppoSAX data we find a strong signature of the index saturation with the mass accretion rate which can be considered as an observational evidence of the converging flow (black hole) in XTE J1650-500. We derive power spectra (PS) of the source time variability in different spectral states as a function of energy band. When the source undergoes a transition to softer states, the PS as a whole is shifted to higher frequencies which can be interpreted as a contraction of the Compton cloud during hard-soft spectral evolution. It is worthwhile to emphasize a detection of a strong low-frequency red noise component in the HSS PS which can be considered a signature of the presence of the strong extended disk in the HSS. Also as a result of our data analysis, we find a very weak sign of K_alpha line appearance in these BeppoSAX data. This finding does not confirm previous claims by Miniutti et al. on the presence of a broad and strongly relativistic iron emission line in this particular set of the BeppoSAX data.
We report the result of an XMM-Newton observation of the black-hole X-ray transient XTE J1650-500 in quiescence. The source was not detected and we set upper limits on the 0.5-10 keV luminosity of 0.9e31-1.0e31 erg/s (for a newly derived distance of
While the sources of X-ray and radio emission in the different states of low-mass X-ray binaries are relatively well understood, the origin of the near-infrared (NIR) and optical emission is more often debated. It is likely that the NIR/optical flux
We present the first results on the black hole candidate XTE J1752-223 from the Gas Slit Camera (GSC) on-board the Monitor of All-sky X-ray Image (MAXI) on the International Space Station. Including the onset of the outburst reported by the Proportio
GX 339-4 has been observed by BeppoSAX twice in spring 1997 as part of a longer monitoring program. The source was close to the highest levels (50 mCrab) of the extended low state (as measured by the XTE ASM during the last 2 years). Its spectrum was
We report on the analysis of new and previously published MMT optical spectra of the black hole binary XTE J1118+480 during the decline from the 2000 outburst to true quiescence. From cross-correlation with template stars, we measure the radial veloc