ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum state reconstruction using binary data from on/off photodetection

114   0   0.0 ( 0 )
 نشر من قبل Matteo G. A. Paris
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The knowledge of the density matrix of a quantum state plays a fundamental role in several fields ranging from quantum information processing to experiments on foundations of quantum mechanics and quantum optics. Recently, a method has been suggested and implemented in order to obtain the reconstruction of the diagonal elements of the density matrix exploiting the information achievable with realistic on/off detectors, e.g. silicon avalanche photo-diodes, only able to discriminate the presence or the absence of light. The purpose of this paper is to provide an overview of the theoretical and experimental developments of the on/off method, including its extension to the reconstruction of the whole density matrix.



قيم البحث

اقرأ أيضاً

Nonlocality of two-mode states of light is addressed by means of CHSH inequality based on displaced on/off photodetection. Effects due to non-unit quantum efficiency and nonzero dark counts are taken into account. Nonlocality of both balanced and unb alanced superpositions of few photon-number states, as well as that of multiphoton twin beams, is investigated. We find that unbalanced superpositions show larger nonlocality than balanced one when noise affects the photodetection process. De-Gaussification by means of (inconclusive) photon subtraction is shown to enhance nonlocality of twin beams in the low energy regime. We also show that when the measurement is described by a POVM, rather than a set of projectors, the maximum achievable value of the Bell parameter in the CHSH inequality is decreased, and is no longer given by the Cirelson bound.
We consider the problem of pulsed biexciton preparation in a quantum dot and show that a pulse-sequence with a simple on-off-on modulation can achieve complete preparation of the target state faster than the commonly used constant and hyperbolic seca nt pulses. The durations of the pulses composing the sequence are obtained from the solution of a transcendental equation. Furthermore, using numerical optimal control, we demonstrate that for a wide range of values of the maximum pulse amplitude, the proposed pulse-sequence prepares the biexciton state in the numerically obtained minimum time, for the specific system under consideration. We finally show with numerical simulations that, even in the presence of dissipation and dephasing, high levels of biexciton state fidelity can be generated in short times.
We investigate the optimal quantum state reconstruction from cloud to many spatially separated users by measure-broadcast-prepare scheme without the availability of quantum channel. The quantum state equally distributed from cloud to arbitrary number of users is generated at each port by ensemble of known quantum states with assistance of classical information of measurement outcomes by broadcasting. The obtained quantum state for each user is optimal in the sense that the fidelity universally achieves the upper bound. We present the universal quantum state distribution by providing physical realizable measurement bases in the cloud as well as the reconstruction method for each user. The quantum state reconstruction scheme works for arbitrary many identical pure input states in general dimensional system.
We determine the resource scaling of machine learning-based quantum state reconstruction methods, in terms of inference and training, for systems of up to four qubits when constrained to pure states. Further, we examine system performance in the low- count regime, likely to be encountered in the tomography of high-dimensional systems. Finally, we implement our quantum state reconstruction method on an IBM Q quantum computer, and compare against both unconstrained and constrained MLE state reconstruction.
We discuss a scheme for reconstructing experimentally the diagonal elements of the density matrix of quantum optical states. Applications to PDC heralded photons, multi-thermal and attenuated coherent states are illustrated and discussed in some details.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا