Relating Web pages to enable information-gathering tasks


الملخص بالإنكليزية

We argue that relationships between Web pages are functions of the users intent. We identify a class of Web tasks - information-gathering - that can be facilitated by a search engine that provides links to pages which are related to the page the user is currently viewing. We define three kinds of intentional relationships that correspond to whether the user is a) seeking sources of information, b) reading pages which provide information, or c) surfing through pages as part of an extended information-gathering process. We show that these three relationships can be productively mined using a combination of textual and link information and provide three scoring mechanisms that correspond to them: {em SeekRel}, {em FactRel} and {em SurfRel}. These scoring mechanisms incorporate both textual and link information. We build a set of capacitated subnetworks - each corresponding to a particular keyword - that mirror the interconnection structure of the World Wide Web. The scores are computed by computing flows on these subnetworks. The capacities of the links are derived from the {em hub} and {em authority} values of the nodes they connect, following the work of Kleinberg (1998) on assigning authority to pages in hyperlinked environments. We evaluated our scoring mechanism by running experiments on four data sets taken from the Web. We present user evaluations of the relevance of the top results returned by our scoring mechanisms and compare those to the top results returned by Googles Similar Pages feature, and the {em Companion} algorithm proposed by Dean and Henzinger (1999).

تحميل البحث