ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Evidence for Multiferroic Magnetoelectric Coupling in 0.9BiFeO3-0.1BaTiO3

254   0   0.0 ( 0 )
 نشر من قبل Dr. Dhananjai Pandey
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic, dielectric and calorimetric studies on 0.9BiFeO3-0.1BaTiO3 indicate strong magnetoelectric coupling. XRD studies reveal a very remarkable change in the rhombohedral distortion angle and a significant shift in the atomic positions at the magnetic Tc due to an isostructural phase transition. The calculated polarization using Rietveld refined atomic positions scales linearly with magnetization. Our results provide the first unambiguous evidence for magnetoelectric coupling of intrinsic multiferroic origin in a BiFeO3 based system.



قيم البحث

اقرأ أيضاً

The coupling between ferroelectric and magnetic orders in multiferroic materials and the nature of magnetoelectric (ME) effects are enduring experimental challenges. In this work, we have studied the response of magnetization to ferroelectric switchi ng in thin-film hexagonal YbFeO3, a prototypical improper multiferroic. The bulk ME decoupling and potential domain-wall ME coupling were revealed using x-ray magnetic circular dichroism (XMCD) measurements with in-situ ferroelectric polarization switching. Our Landau theory analysis suggests that the bulk ME-coupled ferroelectric switching path has a higher energy barrier than that of the ME-decoupled path; this extra barrier energy is also too high to be reduced by the magneto-static energy in the process of breaking single magnetic domains into multi-domains. In addition, the reduction of magnetization around the ferroelectric domain walls predicted by the Landau theory may induce the domain-wall ME coupling in which the magnetization is correlated with the density of ferroelectric domain walls. These results provide important experimental evidence and theoretical insights into the rich possibilities of ME couplings in hexagonal ferrites, such as manipulating the magnetic states by an electric field.
240 - O. Aktas , K. D. Truong , T. Otani 2011
Ultrasonic velocity measurements on the magnetoelectric multiferroic compound CuFeO2 reveal that the antiferromagnetic transition observed at TN1 = 14 K might be induced by an R-3m -> C2/m pseudoproper ferroelastic transition (G. Quirion, M. J. Tagor e, M. L. Plumer, O. A. Petrenko, Phys. Rev. B 77, 094111 (2008)). In that case, the group theory states that the order parameter associated with the structural transition must belong to a two dimensional irreducible representation Eg (x^2 - y^2, xy). Since this type of transition can be driven by a Raman Eg mode, we performed Raman scattering measurements on CuFeO2 between 5 K and 290 K. Considering that the isostructural multiferroic compound CuCrO2 might show similar structural deformations at the antiferromagnetic transition TN1 = 24.3 K, Raman measurements have also been performed for comparison. At ambient temperature, the Raman modes in CuFeO2 are observed at omega_Eg = 352 cm^-1 and omega_Ag = 692 cm^-1, while these modes are detected at omega_E_g = 457 cm^-1 and omega_Ag = 709 cm^-1 in CuCrO2. The analysis of the temperature dependence of modes shows that the frequency of all modes increases down to 5 K. This typical behavior can be attributed to anharmonic phonon-phonon interactions. These results clearly indicate that none of the Raman active modes observed in CuFeO2 and CuCrO2 drive the pseudoproper ferroelastic transition observed at the Neel temperature TN1. Finally, a broad band at about 550 cm^-1 observed in the magnetoelectric phase of CuCrO2 below TN2 could be attributed to a magnon mode.
155 - P. Jain , Q. Wang , M. Roldan 2014
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution in the quest to realize magnetoelectric cou-pling between ferromagnetic and ferroelectric order parameters. Desp ite having antiferro-magnetic order, BiFeO3 (BFO) has nevertheless been a key material in this quest due to excel-lent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La0.7Sr0.3MnO3 (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO is demonstrated using polarized neutron reflectometry in an insulating superlattice. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, which we cite as an example of synthetic magnetoelectric coupling. Importantly, this controlled creation of magnetic moment in BFO suggests a much needed path forward for the design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.
Two-dimensional (2D) semiconducting multiferroics that can effectively couple magnetic and polarization (P) orders have great interest for both fundamental research and technological applications in nanoscale, which are, however, rare in nature. In t his study, we propose a general mechanism to realize semiconducting 2D multiferroics via vdW heterojunction engineering, as demonstrated in a typical heterostructure consisting of magnetic bilayer CrI3 (bi-CrI3) and ferroelectric monolayer In2Se3. Interestingly, the novel indirect orbital coupling between Se 4p and Cr 3d orbitals, intermediated by the interfacial I 5p orbitals, are switchable in the opposite P configurations, resulting in an unexpected mechanism of strong asymmetrical magnetoelectric coupling. Therefore, along with the noticeable ferroelectric energy barrier induced by In2Se3, the realization of opposite magnetic orders in opposite P configurations can eventually result in the novel multiferroicity in bi-CrI3/In2Se3. Finally, we demonstrate that our mechanism can generally be applied to design other vdW multiferroics even with tunable layer thickness.
We report a giant linear magnetoelectric coupling in strained BiMnO3 thin films in which the disorder associated with an islanded morphology gives rise to extrinsic relaxor ferroelectricity that is not present in bulk centrosymmetric ferromagnetic cr ystalline BiMnO3. Strain associated with the disorder is treated as a local variable which couples to the two ferroic order parameters, magnetization M and polarization P. A straightforward gas under a piston thermodynamic treatment explains the observed correlated temperature dependencies of the product of susceptibilities and the magnetoelectric coefficient together with the enhancement of the coupling by the proximity of the ferroic transition temperatures close to the relaxor freezing temperature. Our interpretation is based on a trilinear coupling term in the free energy of the form L(PXM) where L is a hidden antiferromagnetic order parameter, previously postulated by theory for BiMnO3. This phenomenological invariant not only preserves inversion and time reversal symmetry of the strain-induced interactions but also explains the pronounced linear magnetoelectric coupling without using the more conventional higher order biquadratic interaction proportional to (PM)^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا