ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk superconductivity and disorder in single crystals of LaFePO

232   0   0.0 ( 0 )
 نشر من قبل James Analytis
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the intrinsic normal and superconducting properties of the oxypnictide LaFePO. These samples exhibit bulk superconductivity and the evidence suggests that stoichiometric LaFePO is indeed superconducting, in contrast to other reports. We find that superconductivity is independent of the interplane residual resistivity $rho_0$ and discuss the implications of this on the nature of the superconducting order parameter. Finally we find that, unlike $T_c$, other properties in single-crystal LaFePO including the resistivity and magnetoresistance, can be very sensitive to disorder.



قيم البحث

اقرأ أيضاً

Single crystals of the compound LaFePO were prepared using a flux growth technique at high temperatures. Electrical resistivity measurements reveal metallic behavior and a resistive transition to the superconducting state at a critical temperature T_ c ~ 6.6 K. Magnetization measurements also show the onset of superconductivity near 6 K. In contrast, specific heat measurements manifest no discontinuity at T_c. These results lend support to the conclusion that the superconductivity is associated with oxygen vacancies that alter the carrier concentration in a small fraction of the sample, although superconductivity characterized by an unusually small gap value can not be ruled-out. Under applied magnetic fields, T_c is suppressed anisotropically for fields perpendicular and parallel to the ab-plane, suggesting that the crystalline anisotropy strongly influences the superconducting state. Preliminary high-pressure measurements show that T_c passes through a maximum of nearly 14 K at ~ 110 kbar, demonstrating that significantly higher T_c values may be achieved in the phosphorus-based oxypnictides.
The electrical resistivity rho(T) and heat capacity C(T) on single crystals of SrNi2As2 and EuNi2As2 are reported. While there is no evidence for a structural transition in either compound, SrNi2As2 is found to be a bulk superconductor at T_c=0.62 K with a Sommerfeld coefficient of gamma= 8.7 mJ/mol K^2 and a small upper critical field H_{c2} sim 200 Oe. No superconductivity was found in EuNi2As2 above 0.4 K, but anomalies in rho and C reveal that magnetic order associated with the Eu^{2+} magnetic moments occurs at T_m = 14 K.
Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural trans ition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.
We report the synthesis and physical properties of single crystals of stoichiometric BaNi2As2 that crystalizes in the ThCr2Si2 structure with lattice parameters a = 4.112(4) AA and c = 11.54(2) AA. Resistivity and heat capacity show a first order pha se transition at T_0 = 130 K with a thermal hysteresis of 7 K. The Hall coefficient is weakly temperature dependent from room temperature to 2 K where it has a value of -4x10^{-10} Omega-cm/Oe. Resistivity, ac-susceptibility, and heat capacity find evidence for bulk superconductivity at T_c = 0.7 K. The Sommerfeld coefficient at T_c is 11.6 pm 0.9 mJ/molK^2. The upper critical field is anisotropic with initial slopes of dH_{c2}^{c}/dT = -0.19 T/K and dH_{c2}^{ab}/dT = -0.40 T/K, as determined by resistivity.
101 - Nan Zhou , Yue Sun , C. Y. Xi 2021
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) sta te. This state is characterized by inhomogeneous superconductivity, where the Cooper pairs have finite center-of-mass momenta. Recently, the high-field phase has been observed in FeSe, and it was deemed to originate from the FFLO state. Here, we synthesized FeSe single crystals with different levels of disorders. The level of disorder is expressed by the ratio of the mean free path to the coherence length and ranges between 35 and 1.2. The upper critical field $B_{rm{c}2}$ was systematically studied over a wide range of temperatures, which went as low as $sim$ 0.5 K, and magnetic fields, which went up to $sim$ 38 T along the $c$ axis and in the $ab$ plane. In the high-field region parallel to the $ab$ plane, an unusual SC phase was confirmed in all the crystals, and the phase was found to be robust to disorders. This result suggests that the high-filed SC state in FeSe may not be a FFLO state, which should be sensitive to disorders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا