ترغب بنشر مسار تعليمي؟ اضغط هنا

SDSS Observations of the Milky Way vs. N-body Models: A Comparison of Stellar Distributions in the Position-Velocity-Metallicity Space

80   0   0.0 ( 0 )
 نشر من قبل Zeljko Ivezic
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The data obtained by the recent modern sky surveys enable detailed studies of the stellar distribution in the multi-dimensional space spanned by spatial coordinates, velocity and metallicity, from the solar neighborhood all the way out to the outer Milky Way halo. While these results represent exciting observational breakthroughs, their interpretation is not simple. For example, traditional decomposition of the thin and thick disks predicts a strong correlation in metallicity and kinematics at $sim$1 kpc from the Galactic plane; however, recent SDSS--based work has demonstrated an absence of this correlation for disk stars. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non--Gaussian functions that retain their shapes and only shift as the distance from the mid--plane increases. To fully contextualize these recent observational results, a detailed comparison with sophisticated numerical models is necessary. Modern simulations have sufficient resolution and physical detail to study the formation of stellar disks and spheroids over a large baseline of masses and cosmic ages. We discuss preliminary comparisons of various observed maps and N--body model predictions and find them encouraging. In particular, the N--body disk models of Rov{s}kar et al. cite{Roskar 2008} reproduce a change of disk scale height reminiscent of thin/thick disk decomposition, as well as metallicity and rotational velocity gradients, while not inducing a correlation of the latter two quantities, in qualitative agreement with SDSS observations.



قيم البحث

اقرأ أيضاً

Using effective temperature and metallicity derived from SDSS spectra for ~60,000 F and G type main sequence stars (0.2<g-r<0.6), we develop polynomial models for estimating these parameters from the SDSS u-g and g-r colors. We apply this method to S DSS photometric data for about 2 million F/G stars and measure the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component is spatially invariant, while the median disk metallicity smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to -0.8 beyond several kpc. The absence of a correlation between metallicity and kinematics for disk stars is in a conflict with the traditional decomposition in terms of thin and thick disks. We detect coherent substructures in the kinematics--metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [Fe/H]=-0.96, with an rms scatter of only ~0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that the LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to ~0.2 mas/yr, for about 200 million F/G dwarf stars within a distance limit of ~100 kpc (g<23.5). [abridged]
93 - Moran Xia , Qingjuan Yu 2019
Observations and semianalytical galaxy formation and evolution models (SAMs) have suggested the existence of a stellar mass-stellar metallicity relation (MZR), which is shown to be universal for different types of galaxies over a large range of stell ar masses ($M_*sim 10^3$-$10^{11}M_odot$) and dark matter (DM) halo masses ($M_{rm halo}sim 10^9$-$10^{15}h^{-1}M_odot$). In this work, we construct a chemical evolution model to investigate the origin of the MZR, including both the effects of gas inflows and outflows in galaxies. We solve the MZR from the chemical evolution model, by assuming that the cold gas mass ($M_{rm cold}$) and the stellar feedback efficiency ($beta$) follow some power-law scaling relationships with $M_*$ during the growth of a galaxy, i.e., $M_{rm cold}propto M_*^{alpha_{rm gs}}$ and $betapropto M_*^{alpha_{beta{rm s}}}$. We use the SAM to obtain these power-law scaling relations, which appear to be roughly universal over a large range of stellar masses for both satellites and central galaxies within a large range of halo masses. The range of the MZRs produced by our models is in a narrow space, which provides support to the universality of the MZRs. The formation of the MZR is a result caused jointly by that the cold gas fraction decreases with increasing $M_*$ and by that the stellar feedback efficiency decreases with increasing $M_*$ in the galaxy growth, and the exponent in the MZR is around $-alpha_{beta{rm s}}$ or $1-alpha_{rm gs}$. The MZR represents an average evolutional track for the stellar metallicity of a galaxy. The comparison of our model with some previous models for the origin of MZRs is also discussed.
We model the split red clump of the Galactic bulge in OGLE-III photometry, and compare the results to predictions from two N-body models. Our analysis yields precise maps of the brightness of the two red clumps, the fraction of stars in the more dist ant peak, and their combined surface density. We compare the observations to predictions from two N-body models previously used in the literature. Both models correctly predict several features as long as one assumes an angle $alpha_{rm{Bar}} approx 30^{circ}$ between the Galactic bars major axis and the line of sight to the Galactic centre. In particular that the fraction of stars in the faint red clump should decrease with increasing longitude. The biggest discrepancies between models and data are in the rate of decline of the combined surface density of red clump stars toward negative longitudes and of the brightness difference between the two red clumps toward positive longitudes, with neither discrepancy exceeding $sim$25% in amplitude. Our analysis of the red giant luminosity function also yields an estimate of the red giant branch bump parameters toward these high-latitude fields, and evidence for a high rate ($sim$25%) of disk contamination in the bulge at the colour and magnitude of the red clump, with the disk contamination rate increasing toward sightlines further distant from the plane.
We present the first detailed observational picture of a possible ongoing massive cluster hierarchical assembly in the Galactic disk as revealed by the analysis of the stellar full phase-space (3D positions and kinematics and spectro-photometric prop erties) of an extended area ($6^{circ}$ diameter) surrounding the well-known $it h$ and $chi$ Persei double stellar cluster in the Perseus Arm. Gaia-EDR3 shows that the area is populated by seven co-moving clusters, three of which were previously unknown, and by an extended and quite massive ($Msim10^5 M_{odot}$) halo. All stars and clusters define a complex structure with evidence of possible mutual interactions in the form of intra-cluster over-densities and/or bridges. They share the same chemical abundances (half-solar metallicity) and age ($tsim20$ Myr) within a small confidence interval and the stellar density distribution of the surrounding diffuse stellar halo resembles that of a cluster-like stellar system. The combination of these evidences suggests that stars distributed within a few degrees from $it h$ and $chi$ Persei are part of a common, sub-structured stellar complex that we named LISCA I. Comparison with results obtained through direct $N$-body simulations suggest that LISCA I may be at an intermediate stage of an ongoing cluster assembly that can eventually evolve in a relatively massive (a few $10^5 M_{odot}$) stellar system. We argue that such cluster formation mechanism may be quite efficient in the Milky Way and disk-like galaxies and, as a consequence, it has a relevant impact on our understanding of cluster formation efficiency as a function of the environment and redshift.
(Abridged) We present a new high-resolution (7 km/s FWHM) echelle spectrum of 3C 351 obtained with STIS. 3C 351 lies behind the low-latitude edge of high-velocity cloud Complex C, and the new spectrum provides accurate measurements of O I, Si II, Al II, Fe II, and Si III absorption lines at the velocity of the HVC. We use collisional and photoionization models to derive ionization corrections; in both models we find that the overall metallicity Z = 0.1 - 0.3 Z_{solar} in Complex C, but nitrogen must be underabundant. The iron abundance indicates that Complex C contains very little dust. The absorbing gas probably is not gravitationally confined. The gas could be pressure-confined by an external medium, but alternatively we may be viewing the leading edge of the HVC, which is ablating and dissipating as it plunges into the Milky Way. O VI column densities observed with FUSE toward nine QSOs/AGNs behind Complex C support this conclusion: N(O VI) is highest near 3C 351, and the O VI/H I ratio increases substantially with decreasing latitude, suggesting that the lower-latitude portion of the cloud is interacting more vigorously with the Galaxy. The other sight lines through Complex C show some dispersion in metallicity, but with the current uncertainties, the measurements are consistent with a constant metallicity throughout the HVC. However, all of the Complex C sight lines require significant nitrogen underabundances. Finally, we compare the 3C 351 sight line to the sight line to the nearby QSO H1821+643 to search for evidence of outflowing Galactic fountain gas that could be mixing with Complex C. We find that the intermediate-velocity gas detected toward 3C 351 and H1821+643 has a higher metallicity and may well be a fountain/chimney outflow from the Perseus spiral arm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا