ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Magnetic Flux Saturation in Rapidly Rotating M Stars

104   0   0.0 ( 0 )
 نشر من قبل Ansgar Reiners
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Reiners




اسأل ChatGPT حول البحث

We present magnetic flux measurements in seven rapidly rotating M dwarfs. Our sample stars have X-ray and H-alpha emission indicative of saturated emission, i.e., emission at a high level independent of rotation rate. Our measurements are made using near-infrared FeH molecular spectra observed with HIRES at Keck. Because of their large convective overturn times, the rotation velocity of M stars with small Rossby numbers is relatively slow and does not hamper the measurement of Zeeman splitting. The Rossby numbers of our sample stars are as small as 0.01. All our sample stars exhibit magnetic flux of kilo-Gauss strength. We find that the magnetic flux saturates in the same regime as saturation of coronal and chromospheric emission, at a critical Rossby number of around 0.1. The filling factors of both field and emission are near unity by then. We conclude that the strength of surface magnetic fields remains independent of rotation rate below that; making the Rossby number yet smaller by a factor of ten has little effect. These saturated M-star dynamos generate an integrated magnetic flux of roughly 3 kG, with a scatter of about 1 kG. The relation between emission and flux also has substantial scatter.



قيم البحث

اقرأ أيضاً

294 - R. D. Jeffries 2010
At fast rotation rates the coronal activity of G- and K-type stars has been observed to saturate and then decline again at even faster rotation rates -- a phenomenon dubbed super-saturation. In this paper we investigate coronal activity in fast-rotat ing M-dwarfs using deep XMM-Newton observations of 97 low-mass stars of known rotation period in the young open cluster NGC 2547, and combine these with published X-ray surveys of low-mass field and cluster stars of known rotation period. Like G- and K-dwarfs, we find that M-dwarfs exhibit increasing coronal activity with decreasing Rossby number N_R, the ratio of period to convective turnover time, and that activity saturates at L_x/L_bol ~ 10^-3 for log N_R < -0.8. However, super-saturation is not convincingly displayed by M-dwarfs, despite the presence of many objects in our sample with log N_R < -1.8, where super-saturation is observed to occur in higher mass stars. Instead, it appears that a short rotation period is the primary predictor of super-saturation; P <=0.3d for K-dwarfs and perhaps P <=0.2d for M-dwarfs. These observations favour the centrifugal stripping model for super-saturation, where coronal structures are forced open or become radiatively unstable as the Keplerian co-rotation radius moves inside the X-ray emitting coronal volume.
We have searched for short periodicities in the light curves of stars with $T_{rm eff}$ cooler than 4000 K made from 2-minute cadence data obtained in TESS sectors 1 and 2. Herein we report the discovery of 10 rapidly rotating M-dwarfs with highly st ructured rotational modulation patterns among 10 M dwarfs found to have rotation periods less than 1 day. Star-spot models cannot explain the highly structured periodic variations which typically exhibit between 10 and 40 Fourier harmonics. A similar set of objects was previously reported following K2 observations of the Upper Scorpius association (Stauffer et al. 2017). We examine the possibility that the unusual structured light-curves could stem from absorption by charged dust particles that are trapped in or near the stellar magnetosphere. We also briefly explore the possibilities that the sharp structured features in the lightcurves are produced by extinction by coronal gas, by beaming of the radiation emitted from the stellar surface, or by occultations of spots by a dusty ring that surrounds the star. The latter is perhaps the most promising of these scenarios. Most of the structured rotators display flaring activity, and we investigate changes in the modulation pattern following the largest flares. As part of this study, we also report the discovery of 371 rapidly rotating M-dwarfs with rotational periods below 4 hr, of which the shortest period is 1.63 hr.
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
145 - Arkadip Basak 2017
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of neutron star than the Kepler frequency/mass shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic Equations of states (EOS) from the CompOSE database. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground based LIGO/VIRGO interferometers is also discussed very briefly.
In this work we study rapidly rotating stars by considering the Rastall theory of gravity. We obtain and solve the equations by numerical methods for two usual parametrization of polytropic stars. Then the mass-radius relations, moments of inertia an d other results of interest are obtained and compared with the ones for non-rotating stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا