ترغب بنشر مسار تعليمي؟ اضغط هنا

The Monitor project: Rotation periods of low-mass stars in M50

160   0   0.0 ( 0 )
 نشر من قبل Jonathan Irwin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a time-series photometric survey of M50 (NGC 2323), a ~130 Myr open cluster, carried out using the CTIO 4m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 812 candidate cluster members over the mass range 0.2 <~ M/Msol <~ 1.1. The rotation period distributions show a clear mass-dependent morphology, statistically indistinguishable from those in NGC 2516 and M35 taken from the literature. Due to the availability of data from three observing runs separated by ~10 and 1 month timescales, we are able to demonstrate clear evidence for evolution of the photometric amplitudes, and hence spot patterns, over the 10 month gap, although we are not able to constrain the timescales for these effects in detail due to limitations imposed by the large gaps in our sampling, preventing use of the phase information.



قيم البحث

اقرأ أيضاً

230 - Aleks Scholz 2011
We investigate the rotation periods of fully convective very low mass stars (VLM, M<0.3 Msol), with the aim to derive empirical constraints for the spindown due to magnetically driven stellar winds. Our analysis is based on a new sample of rotation p eriods in the main-sequence cluster Praesepe (age 600 Myr). From photometric lightcurves obtained with the Isaac Newton Telescope, we measure rotation periods for 49 objects, among them 26 in the VLM domain. This enlarges the period sample in this mass and age regime by a factor of 6. Almost all VLM objects in our sample are fast rotators with periods <2.5 d, in contrast to the stars with M>0.6 Msol in this cluster which have periods of 7-14 d. Thus, we confirm that the period-mass distribution in Praesepe exhibits a radical break at M~0.3-0.6 Msol. Our data indicate a positive period-mass trend in the VLM regime, similar to younger clusters. In addition, the scatter of the periods increases with mass. For the M>0.3 Msol objects in our sample the period distribution is probably affected by binarity. By comparing the Praesepe periods with literature samples in the cluster NGC2516 (age ~150 Myr) we constrain the spindown in the VLM regime. An exponential rotational braking law P ~ exp(t/tau) with a mass-dependent tau is required to reproduce the data. The spindown timescale tau increases steeply towards lower masses; we derive tau~0.5 Gyr for 0.3 Msol and >1 Gyr for 0.1 Msol. These constraints are consistent with the current paradigm of the spindown due to wind braking. We discuss possible physical origins of this behaviour and prospects for future work.
111 - Marcel Agueros 2011
Stellar rotation periods measured from single-age populations are critical for investigating how stellar angular momentum content evolves over time, how that evolution depends on mass, and how rotation influences the stellar dynamo and the magnetical ly heated chromosphere and corona. We report rotation periods for 40 late-K to mid-M stars members of the nearby, rich, intermediate-age (~600 Myr) open cluster Praesepe. These rotation periods were derived from ~200 observations taken by the Palomar Transient Factory of four cluster fields from 2010 February to May. Our measurements indicate that Praesepes mass-period relation transitions from a well-defined singular relation to a more scattered distribution of both fast and slow rotators at ~0.6 Msun. The location of this transition is broadly consistent with expectations based on observations of younger clusters and the assumption that stellar-spin down is the dominant mechanism influencing angular momentum evolution at 600 Myr. However, a comparison to data recently published for the Hyades, assumed to be coeval to Praesepe, indicates that the divergence from a singular mass-period relation occurs at different characteristic masses, strengthening the finding that Praesepe is the younger of the two clusters. We also use previously published relations describing the evolution of rotation periods as a function of color and mass to evolve the sample of Praesepe periods in time. Comparing the resulting predictions to periods measured in M35 and NGC 2516 (~150 Myr) and for kinematically selected young and old field star populations suggests that stellar spin-down may progress more slowly than described by these relations.
129 - Suzanne Aigrain 2007
The Monitor project is a large-scale program of photometric and spectroscopic monitoring of young open clusters using telescopes at ESO and other observatories. Its primary goal is to detect and characterise new low-mass eclipsing binaries, and the f irst three detected systems are discussed here. We derive the masses and radii of the components of each system directly from the light and radial velocity curves, and compare them to the predictions of commonly used theoretical evolutionary models of low-mass stars.
We have photometrically monitored (Cousins Ic) eight low mass stars and brown dwarfs which are probable members of the Pleiades. We derived rotation periods for two of the stars - HHJ409 and CFHT-PL8 - to be 0.258 d and 0.401 d, respectively. The mas ses of these stars are near 0.4 and 0.08 Msun, respectively; the latter is the second such object near the hydrogen-burning boundary for which a rotation period has been measured. We also observed HHJ409 in V; the relative amplitude in the two bands shows that the spots in that star are about 200 K cooler than the stellar effective temperature of 3560 K and have a filling factor on the order of 13%. With one possible exception, the remaining stars in the sample do not show photometric variations larger than the mean error of measurement. We also examined the M9.5V disk star 2MASSJ0149, which had previously exhibited a strong flare event, but did not detect any photometric variation.
135 - Elaine Simpson 2010
The stellar rotation periods of ten exoplanet host stars have been determined using newly analysed Ca II H & K flux records from Mount Wilson Observatory and Stromgren b, y photometric measurements from Tennessee State Universitys automatic photometr ic telescopes (APTs) at Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 pm 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of fourteen exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا