ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling the Nature of the Radio Emission in Wolf Rayet Stars

255   0   0.0 ( 0 )
 نشر من قبل Gabriela Montes
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present quasi-simultaneous, multi-frequency VLA observations at 4.8, 8.4, and 22.5 GHz, of a sample of 13 Wolf Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.



قيم البحث

اقرأ أيضاً

84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int o an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
135 - D. M.-A. Meyer 2021
A signification fraction of Galactic massive stars (> 8Mo) are ejected from their parent cluster and supersonically sail away through the interstellar medium (ISM). The winds of these fast-moving stars blow asymmetric bubbles thus creating a circumst ellar environment in which stars eventually die with a supernova explosion. The morphology of the resulting remnant is largely governed by the circumstellar medium of the defunct progenitor star. In this paper, we present 2D magneto-hydrodynamical simulations investigating the effect of the ISM magnetic field on the shape of the supernova remnants of a 35Mo star evolving through a Wolf-Rayet phase and running with velocity 20 and 40 km/s, respectively. A 7 microG ambient magnetic field is sufficient to modify the properties of the expanding supernova shock front and in particular to prevent the formation of filamentary structures. Prior to the supernova explosion, the compressed magnetic field in the circumstellar medium stabilises the wind/ISM contact discontinuity in the tail of the wind bubble. A consequence is a reduced mixing efficiency of ejecta and wind materials in the inner region of the remnant, where the supernova shock wave propagates. Radiative transfer calculations for synchrotron emission reveal that the non-thermal radio emission has characteristic features reflecting the asymmetry of exiled core-collapse supernova remnants from Wolf-Rayet progenitors. Our models are qualitatively consistent with the radio appearance of several remnants of high-mass progenitors, namely the bilateral G296.5+10.0 and the shell-type remnants CTB109 and Kes 17, respectively.
47 - J. D. Monnier 2001
This paper discusses our ongoing efforts to characterize dust-enshrouded Wolf-Rayet (WR) stars in the radio and infrared. We have used the Very Large Array to measure the broadband radio spectrum of WR stars in suspected binary systems and discovered non-thermal emission, which is usually attributed to colliding winds. In addition, infrared imaging using aperture masking interferometry on the Keck-I telescope has resolved the dust shells around a number of WR stars with K-magnitudes brighter than ~6. Although this admittedly small study suffers from selection bias, we note that all the dust-enshrouded WR stars with radio detections show evidence for colliding winds, supporting the theory that wind compression in a binary system is necessary for efficient dust production. A consequence of this hypothesis is that virtually all WC8-10 stars must be in binaries, since most are dusty. Single-star and binary stellar evolution models will have to be modified to accommodate this observational result if confirmed.
66 - G. Meynet 2000
Meynet and Arnould (1993) have suggested that Wolf-Rayet (WR) stars could significantly contaminate the Galaxy with 19F. In their scenario, 19F is synthesized at the beginning of the He-burning phase from the 14N left over by the previous CNO-burning core, and is ejected in the interstellar medium when the star enters its WC phase. Recourse to CNO seeds makes the 19F yields metallicity-dependent. These yields are calculated on grounds of detailed stellar evolutionary sequences for an extended range of initial masses (from 25 to 120 Msol) and metallicities (Z = 0.008, 0.02 and 0.04). The adopted mass loss rate prescription enables to account for the observed variations of WR populations in different environments. The 19F abundance in the WR winds of 60 Msol model stars is found to be about 10 to 70 times higher than its initial value, depending on the metallicity. This prediction is used in conjunction with a very simple model for the chemical evolution of the Galaxy to predict that WR stars could be significant (dominant?) contributors to the solar system fluorine content. We also briefly discuss the implications of our model on the possible detection of fluorine at high redshift.
We present the analysis of archival Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) observations of the interacting galaxies NGC 4038/39 (a.k.a. the Antennae) at a distance of 18.1 Mpc. Up to 38 young star-forming complexes with e vident contribution from Wolf-Rayet (WR) stars are unveiled. We use publicly available templates of Galactic WR stars in conjunction with available photometric extinction measurements to quantify and classify the WR population in each star-forming region, on the basis of its nearly Solar oxygen abundance. The total estimated number of WR stars in the Antennae is 4053 $pm$ 84, of which there are 2021 $pm$ 60 WNL and 2032 $pm$ 59 WC-types. Our analysis suggests a global WC to WN-type ratio of 1.01 $pm$ 0.04, which is consistent with the predictions of the single star evolutionary scenario in the most recent BPASS stellar population synthesis models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا