ﻻ يوجد ملخص باللغة العربية
We investigate theoretically the electronic transport properties in narrow graphene ribbons with an adatom-induced defect. It is found that the lowest conductance step of a metallic graphene nanoribbon may develop a dip even down to zero at certain values of the Fermi energy due to the defect. Accompanying the occurrence of the conductance dip, a loop current develops around the defect. We show how the properties of the conductance dip depend on the parameters of the defect, such as the relative position and severity of the defect as well as the width and edges of the graphene ribbons. In particular, for metallic armchair-edges graphene nanoribbons, whether the conductance dip appears or not, they can be controlled by choosing the position of the single defect.
We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presenc
We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as e
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP),
One-dimensional diffusion of Co ad-atoms on graphene nanoribbons has been induced and investigated by means of scanning tunnelling microscopy (STM). To this end, the nanoribbons and the Co ad-atoms have been imaged before and after injecting current
It is generally believed that a point defect in graphene gives rise to an impurity state at zero energy and causes a sharp peak in the local density of states near the defect site. We revisit the defect problem in graphene and find the general consen