ﻻ يوجد ملخص باللغة العربية
First systematic spin probe ESR study of water freezing has been conducted using TEMPOL and TEMPO as the probes. The spin probe signature of the water freezing has been described in terms of the collapse of narrow triplet spectrum into a single broad line. This spin probe signature of freezing has been observed at an anomalously low temperature when a milimoler solution of TEMPOL is slowly cooled from room temperature. A systematic observation has revealed a spin probe concentration dependence of these freezing and respective melting points. These results can be explained in terms of localization of spin probe and liquid water, most probably in the interstices of ice grains, in an ice matrix. The lowering of spin probe freezing point, along with the secondary evidences, like spin probe concentration dependence of peak-to-peak width in frozen limit signal, indicates a possible size dependence of these localizations/entrapments with spin probe concentration. A weak concentration dependence of spin probe assisted freezing and melting points, which has been observed for TEMPO in comparison to TEMPOL, indicates different natures of interactions with water of these two probes. This view is also supported by the relaxation behavior of the two probes.
We investigate the behavior of hydrated sulfonated polysulfones over a range of ion contents through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular dynamics (MD) simulations. Experimental eviden
Glass transition and relaxation of the glycerol-water binary mixture system are studied over the glycerol concentration range of 5 - 85 mol% using the highly sensitive technique of spin probe ESR. For the water rich mixture the glass transition, sens
Freezing of polymer solutions has been extensively investigated from many aspects, especially the complex pattern formation. The cell/dendrite micro-structures are believed to be in the type of diffusion-induced M-S instability. However, the presence
A disordered material that cannot relax to equilibrium, such as an amorphous or glassy solid, responds to deformation in a way that depends on its past. In experiments we train a 2D athermal amorphous solid with oscillatory shear, and show that a sui
Periodic wrinkling of a rigid capping layer on a deformable substrate provides a useful method for templating surface topography for a variety of novel applications. Many experiments have studied wrinkle formation during the compression of a rigid fi