ﻻ يوجد ملخص باللغة العربية
Clusters of galaxies are the largest gravitationally bound objects in the Universe, containing about 10^15 solar masses of hot (10^8 K) gas, galaxies and dark matter in a typical volume of about 10 Mpc^3. Magnetic fields and relativistic particles are mixed with the gas as revealed by giant radio haloes, which arise from diffuse, megaparsec-scale synchrotron radiation at cluster center. Radio haloes require that the emitting electrons are accelerated in situ (by turbulence), or are injected (as secondary particles) by proton collisions into the intergalactic medium. They are found only in a fraction of massive clusters that have complex dynamics, which suggests a connection between these mechanisms and cluster mergers. Here we report a radio halo at low frequencies associated with the merging cluster Abell 521. This halo has an extremely steep radio spectrum, which implies a high frequency cut-off; this makes the halo difficult to detect with observations at 1.4 GHz (the frequency at which all other known radio haloes have been best studied). The spectrum of the halo is inconsistent with a secondary origin of the relativistic electrons, but instead supports turbulent acceleration, which suggests that many radio haloes in the Universe should emit mainly at low frequencies.
We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this near
There are expected to be physical relationships between the globular clusters (GCs) and stellar substructures in the Milky Way, not all of which have yet been found. We search for such substructures from a combined halo sample of SDSS blue horizontal
We present the results of multifrequency observations of two asymmetric, Mpc-scale radio sources with the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). The radio luminosity of these two sources, J1211+743 and J1918+742, are i
In order to understand the possible mechanisms of recurrent jet activity in radio galaxies and quasars, which are still unclear, we have identified such sources with a large range of linear sizes (220 $-$ 917 kpc), and hence time scales of episodic a
We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zeldovich (SZ) effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a