ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a new distributed algorithm, called Directed Transmission Method (DTM). DTM is a fully asynchronous and continuous-time iterative algorithm to solve SPD sparse linear system. As an architecture-aware algorithm, DTM could be freely running on all kinds of heterogeneous parallel computer. We proved that DTM is convergent by making use of the final-value theorem of Laplacian Transformation. Numerical experiments show that DTM is stable and efficient.
In this paper, we propose a new parallel algorithm which could work naturally on the parallel computer with arbitrary number of processors. This algorithm is named Virtual Transmission Method (VTM). Its physical backgroud is the lossless transmission
Waveform Relaxation method (WR) is a beautiful algorithm to solve Ordinary Differential Equations (ODEs). However, because of its poor convergence capability, it was rarely used. In this paper, we propose a new distributed algorithm, named Waveform T
We consider a global variable consensus ADMM algorithm for solving large-scale PDE parameter estimation problems asynchronously and in parallel. To this end, we partition the data and distribute the resulting subproblems among the available workers.
The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully di
In this paper, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This is related to the strong interaction limit of Density Functional Theory. The first idea is to introdu