ﻻ يوجد ملخص باللغة العربية
The longitudinal resistivity of two dimensional (2D) electrons placed in strong magnetic field is significantly reduced by applied electric field, an effect which is studied in a broad range of magnetic fields and temperatures in GaAs quantum wells with high electron density. The data are found to be in good agreement with theory, considering the strong nonlinearity of the resistivity as result of non-uniform spectral diffusion of the 2D electrons. Inelastic processes limit the diffusion. Comparison with the theory yields the inelastic scattering time of the two dimensional electrons. In the temperature range T=2-10(K) for overlapping Landau levels, the inelastic scattering rate is found to be proportional to T^2, indicating a dominant contribution of the electron-electron scattering to the inelastic relaxation. In a strong magnetic field, the nonlinear resistivity demonstrates scaling behavior, indicating a specific regime of electron heating of well-separated Landau levels. In this regime the inelastic scattering rate is found to be proportional to T^3, suggesting the electron-phonon scattering as the dominant mechanism of the inelastic relaxation.
Effect of dc electric field on transport of highly mobile 2D electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric field ind
Quantum oscillations of nonlinear resistance are investigated in response to electric current and magnetic field applied perpendicular to single GaAs quantum wells with two populated subbands. At small magnetic fields current-induced oscillations app
Oscillations of dissipative resistance of two-dimensional electrons in GaAs quantum wells are observed in response to an electric current I and a strong magnetic field applied perpendicular to the two-dimensional systems. Period of the current-induce
We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tubes axis. We find that the fields give rise to an asymmetric disp
Using the method of energy-level statistics, the localization properties of electrons moving in two dimensions in the presence of a perpendicular random magnetic field and additional random disorder potentials are investigated. For this model, extend