ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond the Standard Model Higgs at LHC

342   0   0.0 ( 0 )
 نشر من قبل Steven Lowette
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Steven Lowette




اسأل ChatGPT حول البحث

Models of Beyond the Standard Model (BSM) physics, like the Minimal Supersymmetric Standard Model (MSSM), often involve an extended Higgs sector, giving rise to extra neutral or charged Higgs bosons. The discovery reach expected from simulation studies for such additional Higgs particles is presented for the ATLAS, CMS and FP420 detectors at the LHC. Emphasis is put on production and decay modes involving heavy flavour b and tau particles, which are enhanced in large regions of BSM parameter space. The LHC experiments are indeed particularly well equipped to tackle final states containing heavy flavour.



قيم البحث

اقرأ أيضاً

115 - N. Krumnack 2008
We present an overview of the full range of Higgs searches in models beyond the Standard Model at the Tevatron. This includes both searches for Fermiophobic Higgs and for SUSY Higgs at high tan beta. No excess is seen in the data, so model dependent limits are set.
Prospective searches about Higgs physics and beyond the Standard Model are presented for the CMS and ATLAS experiments. Possible excesses of events in real data could be an indication of the existence of new particles, even with few hundred pb-1 of i ntegrated luminosity. In this paper the focus is on the current analyses strategies and on the potential both for a discovery and/or for an exclusion of the Standard Model Higgs boson in the main decay channels. The searches for some supersymmetric and exotic particles predicted by several theoretical models are also discussed.
We consider the Higgs boson decay processes and its production, and provide a parameterisation tailored for testing models of new physics beyond the Standard Model. We also compare our formalism to other existing parameterisations based on scaling fa ctors in front of the couplings and to effective Lagrangian approaches. Different formalisms allow to best address different aspects of the Higgs boson physics. The choice of a particular parameterisation depends on a non-obvious balance of quantity and quality of the available experimental data, envisaged purpose for the parameterisation and degree of model independence, importance of the radiative corrections, scale at which new particles appear explicitly in the physical spectrum. At present only simple parameterisations with a limited number of fit parameters can be performed, but this situation will improve with the forthcoming experimental LHC data. Detailed fits can only be performed by the experimental collaborations at present, as the full information on the different decay modes is not completely available in the public domain. It is therefore important that different approaches are considered and that the most detailed information is made available to allow testing the different aspects of the Higgs boson physics and the possible hints beyond the Standard Model.
This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High L uminosity (HL) phase of the LHC, defined as $3~mathrm{ab}^{-1}$ of data taken at a centre-of-mass energy of $14~mathrm{TeV}$, and of a possible future upgrade, the High Energy (HE) LHC, defined as $15~mathrm{ab}^{-1}$ of data at a centre-of-mass energy of $27~mathrm{TeV}$. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by $20-50%$ on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics.
154 - Gregory Schott 2012
Results of recent Higgs boson and beyond standard model searches in CMS performed with datasets of 1.0 - 1.7 fb-1 will be summarized in this proceeding contributed to the 41st International Symposium on Multiparticle Dynamics (ISMD2011).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا