ترغب بنشر مسار تعليمي؟ اضغط هنا

Macrospin model of incubation delay due to the field-like spin transfer torque

69   0   0.0 ( 0 )
 نشر من قبل Samir Garzon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the absence of pre-switching oscillations (incubation delay) in magnetic tunnel junctions can be explained within the macrospin model by a sizable field-like component of the spin-transfer torque. It is further suggested that measurements of the voltage dependence of tunnel junction switching time in the presence of external easy axis magnetic fields can be used to determine the magnitude and voltage dependence of the field-like torque.



قيم البحث

اقرأ أيضاً

Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the efficient SOT switching requires to understand combined effects of the two torque-components. Previous quasi-static measurements have reported an increased switching probability with the width of current pulses, as predicted with considering the damping-like torque only. Here we report a decreased switching probability at longer pulse-widths, based on time-resolved measurements. Micromagnetic analysis reveals that this anomalous SOT switching results from domain wall reflections at sample edges. The domain wall reflection is found to strongly depend on the field-like torque and its relative sign to the damping-like torque. Our result demonstrates a key role of the field-like torque in the deterministic SOT switching and notifies the importance of sign correlation of the two torque-components, which may shed light on the SOT switching mechanism.
Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as is the case for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a material with weak, short-range magnetic order -- namely, a macroscopic ensemble of superparamagnetic-like Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect sub-ns dynamics of the Co nanomagnets, excited into precession with cone angle $geq$0.003$^{circ}$ by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at sub-ns timescales.
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular to the film plane. By tuning the delay and amplification of the self-injected signal, we identify dynamical regimes in this system such as chaos, switching between precession modes with complex transients, and oscillator death. Such delayed feedback schemes open up a new field of exploration for such oscillators, where the complex transient states might find important applications in information processing.
We present measurements of spin orbit torques generated by Ir as a function of film thickness in sputtered Ir/CoFeB and Ir/Co samples. We find that Ir provides a damping-like component of spin orbit torque with a maximum spin torque conductivity 1.4e 5 in SI unit and a maximum spin-torque efficiency of 0.04, which is sufficient to drive switching in an 0.8 nm film of CoFeB with perpendicular magnetic anisotropy. We also observe a surprisingly large field like spin orbit torque. Measurements as a function of Ir thickness indicate a substantial contribution to the FLT from an interface mechanism so that in the ultrathin limit there is a non-zero FLT with a maximum torque conductivity -5.0E4 in the SI unit. When the Ir film thickness becomes comparable to or greater than its spin diffusion length, 1.6 nm, there is also a smaller bulk contribution to the fieldlike torque.
In the normal metal/ferromagnetic insulator bilayer (such as Pt/Y$_{3}$Fe$_{5}$O$_{12}$) and the normal metal/ferromagnetic metal/oxide trilayer (such as Pt/Co/AlO$_{x}$) where spin injection and ejection are achieved by the spin Hall effect in the n ormal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their damping-like to field-like component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface $s-d$ coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا