Since the inception of genetic algorithmics the identification of computational efficiencies of the simple genetic algorithm (SGA) has been an important goal. In this paper we distinguish between a computational competency of the SGA--an efficient, but narrow computational ability--and a computational proficiency of the SGA--a computational ability that is both efficient and broad. Till date, attempts to deduce a computational proficiency of the SGA have been unsuccessful. It may, however, be possible to inductively infer a computational proficiency of the SGA from a set of related computational competencies that have been deduced. With this in mind we deduce two computational competencies of the SGA. These competencies, when considered together, point toward a remarkable computational proficiency of the SGA. This proficiency is pertinent to a general problem that is closely related to a well-known statistical problem at the cutting edge of computational genetics.