ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignment of the ATLAS Inner Detector Tracking System

160   0   0.0 ( 0 )
 نشر من قبل Muge Karagoz Unel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Muge Karagoz Unel




اسأل ChatGPT حول البحث

The ATLAS detector at CERNs Large Hadron Collider (LHC) is equipped with a tracking system at its core (the Inner Detector, ID) consisting of silicon and gaseous straw tube detectors. The physics performance of the ID requires a precision alignment; a challenge involving complex algorithms and significant computing power. The alignment algorithms were already validated on: Combined Test Beam data, Cosmic Ray runs and simulated physics events. The alignment chain was tested on a daily basis in exercises that mimicked ATLAS data taking operations. ID commissioning after final installation into the ATLAS detector has yielded thousands of reconstructed cosmic ray tracks, which have been used for an initial alignment of the ID before the LHC start-up. A hardware system using Frequency Scanning Interferometry will be used to monitor structural deformations. Given the programme outlined here, the ATLAS Inner Detector has had a solid preparation for LHC collisions.



قيم البحث

اقرأ أيضاً

52 - D. Andreou 2019
The Inner Tracking System (ITS) of the ALICE experiment will be upgraded during the second long LHC shutdown in $mathrm{2019}-mathrm{2020}$. The main goal of the ALICE ITS Upgrade is to enable high precision measurements of low - momentum particles ( < 1 GeV/c) by acquiring a large sample of events, benefiting from the increase of the LHC instantaneous luminosity of $mathrm{Pb}-mathrm{Pb}$ collisions to $mathcal{L} = 6 cdot 10^{27} cm^{-2} s^{-1} $ during Run 3. Working in this direction the ITS upgrade project is focusing on the increase of the readout rate, on the improvement of the impact parameter resolution, as well as on the improvement of the tracking efficiency and the position resolution. The major setup modification is the substitution of the current ITS with seven layers of silicon pixel detectors. The ALPIDE chip, a CMOS Monolithic Active Pixel Sensor (MAPS), was developed for this purpose and offers a spatial resolution of 5 $mu$m. The use of MAPS together with a stringent mechanical design allows for the reduction of the material budget down to 0.35% $X_0$ for the innermost layers and 1% $X_0$ for the outer layers. The detector design was validated during the research and development period through a variety of tests ensuring the proper operation for the full lifetime inside ALICE. The production phase is close to completion with all the new assembled components undergoing different tests that aim to characterize the modules and staves and determine their qualification level. This contribution describes the detector design, the measurements performed during the research and development phase, as well as the production status.
The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detecto r layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.
LHCb is one of the four main experiments of the Large Hadron Collider (LHC) project, which will start at CERN in 2008. The experiment is primarily dedicated to B-Physics and hence requires precise vertex reconstruction. The silicon vertex locator (VE LO) has a single hit precision of better than 10 micron and is used both off-line and in the trigger. These requirements place strict constraints on its alignment. Additional challenges for the alignment arise from the detector being retracted between each fill of the LHC and from its unique circular disc r/phi strip geometry. This paper describes the track based software alignment procedure developed for the VELO. The procedure is primarily based on a non-iterative method using a matrix inversion technique. The procedure is demonstrated with simulated events to be fast, robust and to achieve a suitable alignment precision.
The innermost part of the ATLAS experiment will be a pixel detector containing around 1750 individual detector modules. A detector control system (DCS) is required to handle thousands of I/O channels with varying characteristics. The main building bl ocks of the pixel DCS are the cooling system, the power supplies and the thermal interlock system, responsible for the ultimate safety of the pixel sensors. The ATLAS Embedded Local Monitor Board (ELMB), a multi purpose front end I/O system with a CAN interface, is foreseen for several monitoring and control tasks. The Supervisory, Control And Data Acquisition (SCADA) system will use PVSS, a commercial software product chosen for the CERN LHC experiments. We report on the status of the different building blocks of the ATLAS pixel DCS.
117 - R. Angstadt , L. Bagby , A. Bean 2009
This paper describes the design, fabrication, installation and performance of the new inner layer called Layer 0 (L0) that was inserted in the existing Run IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab Tevatron collider. L0 provides tracking information from two layers of sensors, which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm respectively from the beam axis. The sensors and readout electronics are mounted on a specially designed and fabricated carbon fiber structure that includes cooling for sensor and readout electronics. The structure has a thin polyimide circuit bonded to it so that the circuit couples electrically to the carbon fiber allowing the support structure to be used both for detector grounding and a low impedance connection between the remotely mounted hybrids and the sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا