ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Ray Spectroscopy of the Classical Nova V458 Vulpeculae with Suzaku

123   0   0.0 ( 0 )
 نشر من قبل Masahiro Tsujimoto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted a target of opportunity X-ray observation of the classical nova V458 Vulpeculae 88 days after the explosion using the Suzaku satellite. With a 20 ks exposure, the X-ray Imaging Spectrometer detected X-ray emission significantly harder than typical super-soft source emission. The X-ray spectrum shows K lines from N, Ne, Mg, Si, and S, and L-series emission from Fe in highly ionized states. The spectrum can be described by a single temperature (0.64 keV) thin thermal plasma model in collisional equilibrium with a hydrogen-equivalent extinction column density of ~3e21/cm2, a flux of ~1e-12 erg/s/cm2, and a luminosity of ~6e34 erg/s in the 0.3-3.0 keV band at an assumed distance of 13 kpc. We found a hint of an enhancement of N and deficiencies of O and Fe relative to other metals. The observed X-ray properties can be interpreted as the emission arising from shocks of ejecta from an ONe-type nova.



قيم البحث

اقرأ أيضاً

We report the radio detection of a shell-like HI structure in proximity to, and probably associated with, the nova V458 Vul. High spectral resolution observation with the Giant Metrewave Radio Telescope has made it possible to study the detailed kine matics of this broken and expanding shell. Unlike the diffuse Galactic HI emission, this is a single velocity component emission with significant clumping at ~ 0.5 scales. The observed narrow line width of ~ 5 km/s suggests that the shell consists of mostly cold gas. Assuming a distance of 13 kpc to the system, as quoted in the literature, the estimated HI mass of the nebula is about 25 M_sun. However, there are some indications that the system is closer than 13 kpc. If there is a physical association of the HI structure and the nova system, the asymmetric morphology and the off-centred stellar system indicates past strong interaction of the mass loss in the asymptotic giant branch phase with the surrounding interstellar medium. So far, this is the second example, after GK Per, of a large HI structure associated with a classical nova.
We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal em ission at kT=0.64 keV with an X-ray band unabsorbed luminosity of 2.3x10^{34} erg s^{-1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2^{+0.3}_{-0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT=23^{+9}_{-5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
We report the Suzaku detection of a rapid flare-like X-ray flux amplification early in the development of the classical nova V2672 Ophiuchi. Two target-of-opportunity ~25 ks X-ray observations were made 12 and 22 days after the outburst. The flux amp lification was found in the latter half of day 12. Time-sliced spectra are characterized by a growing supersoft excess with edge-like structures and a relatively stable optically-thin thermal component with Ka emission lines from highly ionized Si. The observed spectral evolution is consistent with a model that has a time development of circumstellar absorption, for which we obtain the decline rate of ~10-40 % in a time scale of 0.2 d on day 12. Such a rapid drop of absorption and short-term flux variability on day 12 suggest inhomogeneous ejecta with dense blobs/holes in the line of sight. Then on day 22 the fluxes of both supersoft and thin-thermal plasma components become significantly fainter. Based on the serendipitous results we discuss the nature of this source in the context of both short- and long-term X-ray behavior.
136 - P. Rodriguez-Gil 2010
We present time-resolved optical spectroscopy of V458 Vulpeculae (Nova Vul 2007 No. 1) spread over a period of 15 months starting 301 days after its discovery. Our data reveal radial velocity variations in the HeII {lambda}5412 and HeII {lambda}4686 emission lines. A period analysis of the radial velocity curves resulted in a period of 98.09647 pm 0.00025 min (0.06812255 pm 0.00000017 d) which we identify with the orbital period of the binary system. V458 Vul is therefore the planetary nebula central binary star with the shortest period known. We explore the possibility of the system being composed of a relatively massive white dwarf (M1 gsim 1.0 Msun) accreting matter from a post-asymptotic giant branch star which produced the planetary nebula observed. In this scenario, the central binary system therefore underwent two common-envelope episodes. A combination of previous photoionisation modelling of the nebular spectra, post-asymptotic giant branch evolutionary tracks and the orbital period favour a mass of M2 sim 0.6 Msun for the donor star. Therefore, the total mass of the system may exceed the Chandrasekhar mass, which makes V458 Vul a Type Ia supernova progenitor candidate.
We report on observations of SN 1006 with the X-ray Imaging Spectrometers (XIS) on board Suzaku. We firmly detected K-shell emission from Fe, for the first time, and find that the Fe ionization state is quite low. The broad band spectrum extracted fr om the southeast of the remnant is well fitted with a model consisting of three optically thin thermal non-equilibrium ionization plasmas and a power-law component. Two of the thermal models are highly overabundant in heavy elements and, hence, are likely due to ejecta. These components have different ionization parameters: $n_et sim 1.4times 10^{10}$ cm$^{-3}$ s and $n_et sim 7.7times 10^8$ cm$^{-3}$ s and it is the later one that produces the Fe-K emission. This suggests that Fe has been heated by the reverse shock more recently than the other elements, consistent with a picture where the ejecta are stratified by composition with Fe in the interior. On the other hand, the third thermal component is assumed to be solar abundance, and we associate it with emission from the interstellar medium (ISM). The electron temperature and ionization parameter are $kT_e sim $0.5 keV and $n_et sim 5.8times 10^9$ cm$^{-3}$ s. The electron temperature is lower than that expected from the shock velocity which suggests a lack of collisionless electron heating at the forward shock. The extremely low ionization parameter and extreme non-equilibrium state are due to the low density of the ambient medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا