ترغب بنشر مسار تعليمي؟ اضغط هنا

Valence-bond theory of highly disordered quantum antiferromagnets

266   0   0.0 ( 0 )
 نشر من قبل Jos\\'e Abel Hoyos Neto
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a large-N variational approach to describe the magnetism of insulating doped semiconductors based on a disorder-generalization of the resonating-valence-bond theory for quantum antiferromagnets. This method captures all the qualitative and even quantitative predictions of the strong-disorder renormalization group approach over the entire experimentally relevant temperature range. Finally, by mapping the problem on a hard-sphere fluid, we could provide an essentially exact analytic solution without any adjustable parameters.



قيم البحث

اقرأ أيضاً

Every singlet state of a quantum spin 1/2 system can be decomposed into a linear combination of valence bond basis states. The range of valence bonds within this linear combination as well as the correlations between them can reveal the nature of the singlet state, and are key ingredients in variational calculations. In this work, we study the bipartite valence bond distributions and their correlations within the ground state of the Heisenberg antiferromagnet on bipartite lattices. In terms of field theory, this problem can be mapped to correlation functions near a boundary. In dimension d >= 2, a non-linear sigma model analysis reveals that at long distances the probability distribution P(r) of valence bond lengths decays as |r|^(-d-1) and that valence bonds are uncorrelated. By a bosonization analysis, we also obtain P(r) proportional to |r|^(-d-1) in d=1 despite the different mechanism. On the other hand, we find that correlations between valence bonds are important even at large distances in d=1, in stark contrast to d >= 2. The analytical results are confirmed by high-precision quantum Monte Carlo simulations in d=1, 2, and 3. We develop a single-projection loop variant of the valence bond projection algorithm, which is well-designed to compute valence bond probabilities and for which we provide algorithmic details.
We carried out AC magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below ~1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground stat e, i.e. without broken symmetries or frozen moments. However, the AC susceptibility revealed a dilute-spin-glass like transition below ~ 1 K. Antiferromagnetically coupled Mo5+ 4d1 electrons in triply degenerate t2g orbitals are in this material arranged in a geometrically frustrated fcc lattice. Bulk magnetic susceptibility data has previously been interpreted in terms of a freezing to a heterogeneous state with non-magnetic sites where 4d^1 electrons have paired in spin-singlets dimers, and residual unpaired Mo5+ 4d1 electrons. Based on the magnetic heat capacity data it has been suggested that this heterogeneity is the result of kinetic constraints intrinsic to the physics of the pure system (possibly due to topological overprotection), leading to a self-induced glass of valence bonds between neighbouring 4d1 electrons. The muSR relaxation unambiguously points to a static heterogeneous state with a static arrangement of unpaired electrons isolated by spin-singlet (valence bond) dimers between the majority of Mo5+ 4d electrons. The AC susceptibility data indicate that the residual magnetic moments freeze into a dilute-spin-glass-like state. This is in apparent contradiction with the muon-spin decoupling at 50 mK in fields up to 200 mT, which indicates that, remarkably, the time scale of the field fluctuations from the residual moments is ~ 5 ns. Comparable behaviour has been observed in other geometrically frustrated magnets with spin-liquid-like behaviour and the implications of our observations on Ba2YMoO6 are discussed in this context.
We analyze the effect of quenched disorder on spin-1/2 quantum magnets in which magnetic frustration promotes the formation of local singlets. Our results include a theory for 2d valence-bond solids subject to weak bond randomness, as well as extensi ons to stronger disorder regimes where we make connections with quantum spin liquids. We find, on various lattices, that the destruction of a valence-bond solid phase by weak quenched disorder leads inevitably to the nucleation of topological defects carrying spin-1/2 moments. This renormalizes the lattice into a strongly random spin network with interesting low-energy excitations. Similarly when short-ranged valence bonds would be pinned by stronger disorder, we find that this putative glass is unstable to defects that carry spin-1/2 magnetic moments, and whose residual interactions decide the ultimate low energy fate. Motivated by these results we conjecture Lieb-Schultz-Mattis-like restrictions on ground states for disordered magnets with spin-1/2 per statistical unit cell. These conjectures are supported by an argument for 1d spin chains. We apply insights from this study to the phenomenology of YbMgGaO$_4$, a recently discovered triangular lattice spin-1/2 insulator which was proposed to be a quantum spin liquid. We instead explore a description based on the present theory. Experimental signatures, including unusual specific heat, thermal conductivity, and dynamical structure factor, and their behavior in a magnetic field, are predicted from the theory, and compare favorably with existing measurements on YbMgGaO$_4$ and related materials.
We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In b oth cases, we concentrate on the valence bond solid (VBS) phase and describe such a phase with the bond-operator representation. Within this formalism, the original spin Hamiltonian is mapped into an effective interacting boson model for the triplet excitations. We study the effective Hamiltonian at the harmonic approximation and determine the spectrum of the elementary triplet excitations. We then follow an analytical procedure, which is based on a modified spin-wave theory for finite systems and was originally employed to calculate the entanglement entropies of magnetic ordered phases, and calculate the entanglement entropies of the VBS ground states. In particular, we consider one-dimensional (line) subsystems within the square lattice, a choice that allows us to consider line subsystems with sizes up to $L = 1000$. We combine such a procedure with the results of the bond-operator formalism at the harmonic level and show that, for both dimerized Heisenberg models, the entanglement entropies of the corresponding VBS ground states obey an area law as expected for gapped phases. For both columnar-dimer and staggered-dimer models, we also show that the entanglement entropies increase but do not diverge as the dimerization decreases and the system approaches the Neel--VBS quantum phase transition. Finally, the entanglement spectra associated with the VBS ground states are presented.
An isotropic anti-ferromagnetic quantum state on a square lattice is characterized by symmetry arguments only. By construction, this quantum state is the result of an underlying valence bond structure without breaking any symmetry in the lattice or s pin spaces. A detailed analysis of the correlations of the quantum state is given (using a mapping to a 2D classical statistical model and methods in field theory like mapping to the non-linear sigma model or bosonization techniques) as well as the results of numerical treatments (regarding exact diagonalization and variational methods). Finally, the physical relevance of the model is motivated. A comparison of the model to known anti-ferromagnetic Mott-Hubbard insulators is given by means of the two-point equal-time correlation function obtained i) numerically from the suggested state and ii) experimentally from neutron scattering on cuprates in the anti-ferromagnetic insulator phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا