ﻻ يوجد ملخص باللغة العربية
We introduce and study oscillator topologies on paratopological groups and define certain related number invariants. As an application we prove that a Hausdorff paratopological group $G$ admits a weaker Hausdorff group topology provided $G$ is 3-oscillating. A paratopological group $G$ is 3-oscillating (resp. 2-oscillating) provided for any neighborhood $U$ of the unity $e$ of $G$ there is a neighborhood $Vsubset G$ of $e$ such that $V^{-1}VV^{-1}subset UU^{-1}U$ (resp. $V^{-1}Vsubset UU^{-1}$). The class of 2-oscillating paratopological groups includes all collapsing, all nilpotent paratopological groups, all paratopological groups satisfying a positive law, all paratopological SIN-group and all saturated paratopological groups (the latter means that for any nonempty open set $Usubset G$ the set $U^{-1}$ has nonempty interior). We prove that each totally bounded paratopological group $G$ is countably cellular; moreover, every cardinal of uncountable cofinality is a precaliber of $G$. Also we give an example of a saturated paratopological group which is not isomorphic to its mirror paratopological group as well as an example of a 2-oscillating paratopological group whose mirror paratopological group is not 2-oscillating.
We answer several questions of I.Protasov and E.Zelenyuk concerning topologies on groups determined by T-sequences. A special attention is paid to studying the operation of supremum of two group topologies.
(1) Every infinite, Abelian compact (Hausdorff) group K admits 2^|K|-many dense, non-Haar-measurable subgroups of cardinality |K|. When K is nonmetrizable, these may be chosen to be pseudocompact. (2) Every infinite Abelian group G admits a family A
We prove that the existence of a selective ultrafilter implies the existence of a countably compact Hausdorff group topology on the free Abelian group of size continuum. As a consequence, we show that the existence of a selective ultrafilter implies
A topological group $X$ is called $duoseparable$ if there exists a countable set $Ssubseteq X$ such that $SUS=X$ for any neighborhood $Usubseteq X$ of the unit. We construct a functor $F$ assigning to each (abelian) topological group $X$ a duoseparab
By the {em Suslinian number} $Sln(X)$ of a continuum $X$ we understand the smallest cardinal number $kappa$ such that $X$ contains no disjoint family $C$ of non-degenerate subcontinua of size $|C|gekappa$. For a compact space $X$, $Sln(X)$ is the sma