ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust Extinction in High-z Galaxies with GRB Afterglow Spectroscopy - The 2175{AA} Feature at z=2.45

148   0   0.0 ( 0 )
 نشر من قبل Darach Watson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Eliasdottir




اسأل ChatGPT حول البحث

We report the clear detection of the 2175A dust absorption feature in the optical afterglow spectrum of the gamma-ray burst (GRB) GRB070802 at a redshift of z=2.45. This is the highest redshift for a detected 2175A dust bump to date, and it is the first clear detection of the 2175A bump in a GRB host galaxy, while several tens of optical afterglow spectra without the bump have been recorded in the past decade. The derived extinction curve gives A_V=0.8-1.5 depending on the assumed intrinsic slope. Of the three local extinction laws, an LMC type extinction gives the best fit to the extinction curve of the host of GRB070802. Besides the 2175A bump we find that the spectrum of GRB070802 is characterized by unusually strong low-ionization metal lines and possibly a high metallicity for a GRB sightline ([Si/H]=-0.46+/-0.38, [Zn/H]=-0.50+/-0.68). In particular, the spectrum of GRB070802 is unique for a GRB spectrum in that it shows clear CI absorption features, leading us to propose a correlation between the presence of the bump and CI. The gas to dust ratio for the host galaxy is found to be significantly lower than that of other GRB hosts with N(HI)/A_V=(2.4+/-1.0)x10^21 cm^-2 mag^-1, which lies between typical MW and LMC values. Our results are in agreement with the tentative conclusion reached by Gordon et al. 2003 that the shape of the extinction curve, in particular the presence of the bump, is affected by the UV flux density in the environment of the dust.



قيم البحث

اقرأ أيضاً

The UV extinction feature at 2175 AA is ubiquitously observed in the Galaxy but is rarely detected at high redshifts. Here we report the spectroscopic detection of the 2175 AA bump on the sightline to the gamma-ray burst (GRB) afterglow GRB 180325A a t z=2.2486, the only unambiguous detection over the past ten years of GRB follow-up, at four different epochs with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT)/X-shooter. Additional photometric observations of the afterglow are obtained with the Gamma-Ray burst Optical and Near-Infrared Detector (GROND). We construct the near-infrared to X-ray spectral energy distributions (SEDs) at four spectroscopic epochs. The SEDs are well-described by a single power-law and an extinction law with R_V~4.4, A_V~1.5, and the 2175 AA extinction feature. The bump strength and extinction curve are shallower than the average Galactic extinction curve. We determine a metallicity of [Zn/H]>-0.98 from the VLT/X-shooter spectrum. We detect strong neutral carbon associated with the GRB with an equivalent width of Wr(lambda 1656) = 0.85+/-0.05. We also detect optical emission lines from the host galaxy. Based on the Halpha emission line flux, the derived dust-corrected star-formation rate is ~46+/-4 M_sun/yr and the predicted stellar mass is log M*/M_sun~9.3+/-0.4, suggesting the host galaxy is amongst the main-sequence star-forming galaxies.
168 - J. Deng , W. Zheng , M. Zhai 2009
We present optical photometry of the GRB 060912A afterglow obtained with ground-based telescopes, from about 100 sec after the GRB trigger till about 0.3 day later, supplemented with the Swift optical afterglow data released in its official website. The optical light curve (LC) displays a smooth single power-law decay throughout the observed epochs, with a power-law index of about -1 and no significant color evolution. This is in contrast to the X-ray LC which has a plateau phase between two normal power-law decays of a respective index of about -1 and -1.2. It is shown by our combined X-ray and optical data analysis that this asynchronous behavior is difficult to be reconciled with the standard afterglow theory and energy injection hypothesis. We also construct an optical-to-X-ray spectral energy distribution at about 700 sec after the GRB trigger. It displays a significant flux depression in the B-band, reminding us of the possibility of a host-galaxy (at z=0.937) 2175-A dust absorption similar to the one that characterizes the Milky Way extinction law. Such an identification, although being tentative, may be confirmed by our detailed analysis using both template extinction laws and the afterglow theory. So far the feature is reported in very few GRB afterglows. Most seem to have a host galaxy either unusually bright for a GRB, just like this one, or of an early type, supporting the general suggestion of an anti-correlation between the feature and star-forming activities.
139 - Tayyaba Zafar 2010
Context: GRB afterglows are excellent probes of gas and dust in star-forming galaxies at all epochs. It has been posited that dust in the early Universe must be different from dust at lower z. To date two reports directly support this contention, one of which is based on the spectral shape of GRB 050904 at z = 6.295. Aims: We reinvestigate the afterglow to understand dust at high z. We address the claimed evidence for unusual (SN-origin) dust in its host galaxy by simultaneously examining the X-ray and optical/NIR spectrophotometric data. Methods: We derive the intrinsic SED of the afterglow at 0.47, 1.25 and 3.4 days, by re-reducing the Swift X-ray data, the 1.25 days FORS2 z-Gunn photometric data, the spectroscopic and z-band photometric data at ~3 days from the Subaru telescope, as well as the critical UKIRT Z-band photometry at 0.47 days, upon which the claim of dust detection largely relies. Results: We find no evidence of dust extinction in the SED. We compute flux densities at lambda_rest = 1250 AA directly from the observed counts at all epochs. In the earliest epoch, 0.47 days, the Z-band suppression is found to be smaller (0.3 +- 0.2 mag) than previously reported and statistically insignificant (<1.5 sigma). Furthermore we find that the photometry of this band is unstable and difficult to calibrate. Conclusions: From the afterglow SED we demonstrate that there is no evidence for dust extinction -- the SED at all times can be reproduced without dust, and at 1.25 days in particular, significant extinction can be excluded, with A(3000 AA) < 0.27 mag at 95% confidence using the SN-type extinction curve. We conclude that there is no evidence of any extinction in the afterglow of GRB 050904 and that the presence of SN-origin dust in the host of GRB 050904 must be viewed skeptically. [abridged]
144 - Tayyaba Zafar 2011
GRB afterglows are well suited to extinction studies due to their brightness, simple power-law spectra and the occurrence of GRBs in distant star forming galaxies. In this paper we present results from the SED analysis of a sample of 41 GRB afterglow s, from X-ray to NIR wavelengths. This is the largest sample of extinction curves outside the Local Group and, to date, the only extragalactic sample of absolute extinction curves based on spectroscopy. Visual extinction correlation with HI column density as well as total and gas-phase metal column density are examined. Approximately half the sample require a cooling break between the optical and X-ray regimes. The broken power-law SEDs show an average change in the spectral index of delta_beta=0.51 with a standard deviation of 0.02. This is consistent with the expectation from a simple synchrotron model. Of the sample, 63% are well described by the SMC-type extinction curve and have moderate or low extinction, with AV<0.65. Almost a quarter of our sample is consistent with no significant extinction (typically AV<0.1). The 2175AA extinction bump is detected unequivocally in 7% of our sample (3 GRBs), which all have A_V>1.0. We find an anti-correlation between gas-to-dust ratio and metallicity consistent with the Local Group relation. Our metals-to-dust ratios derived from the soft X-ray absorption are always larger (3-30 times) than the Local Group value, which may mean that GRB hosts may be less efficient at turning their metals into dust. However, we find that gas, dust, and metal column densities are all likely to be influenced by photo-ionization and dust destruction effects from the GRB. [abridged]
77 - Junfeng Wang 2004
The strongest spectroscopic dust extinction feature in the Milky Way, the broad absorption bump at 2175 AA, is generally believed to be caused by aromatic carbonaceous materials -- very likely a mixture of Polycyclic Aromatic Hydrocarbon (PAH) molecu les, the most abundant and widespread organic molecules in the Milky Way galaxy. In this paper we report identifications of this absorption feature in three galaxies at $1.4 lesssim z lesssim 1.5$ which produce intervening MgII absorption toward quasars discovered by the Sloan Digital Sky Survey (SDSS). The observed spectra can be fit using Galactic-type extinction laws, characterized by parameters [R_V, E(B-V)] ~ [0.7, 0.14], [1.9, 0.13], and [5.5, 0.23], respectively, where R_V=A_V/E(B-V) is the total-to-selective extinction ratio, E(B-V) = A_B-A_V is the color-excess. These discoveries imply that the dust in these distant quasar absorption systems is similar in composition to that of Milky Way, but with a range of different grain size distributions. The presence of complex aromatic hydrocarbon molecules in such distant galaxies is important for both astrophysical and astrobiological investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا