ترغب بنشر مسار تعليمي؟ اضغط هنا

Lessons Learned from Sloan Digital Sky Survey Operations

353   0   0.0 ( 0 )
 نشر من قبل Scot Kleinman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astronomy is changing. Large projects, large collaborations, and large budgets are becoming the norm. The Sloan Digital Sky Survey (SDSS) is one example of this new astronomy, and in operating the original survey, we put in place and learned many valuable operating principles. Scientists sometimes have the tendency to invent everything themselves but when budgets are large, deadlines are many, and both are tight, learning from others and applying it appropriately can make the difference between success and failure. We offer here our experiences well as our thoughts, opinions, and beliefs on what we learned in operating the SDSS.



قيم البحث

اقرأ أيضاً

We have combined a sample of 44984 quasars, selected from the Sloan Digital Sky Survey (SDSS) Data Release 3, with the FIRST radio survey. Using a novel technique where the optical quasar position is matched to the complete radio environment within 4 50, we are able to characterize the radio morphological make-up of what is essentially an optically selected quasar sample, regardless of whether the quasar (nucleus) itself has been detected in the radio. About 10% of the quasar population have radio cores brighter than 0.75 mJy at 1.4 GHz, and 1.7% have double lobed FR2-like radio morphologies. About 75% of the FR2 sources have a radio core (> 0.75 mJy). A significant fraction (~40%) of the FR2 quasars are bent by more than 10 degrees, indicating either interactions of the radio plasma with the ICM or IGM. We found no evidence for correlations with redshift among our FR2 quasars: radio lobe flux densities and radio source diameters of the quasars have similar distributions at low (mean 0.77) and high (mean 2.09) redshifts. Using a smaller high reliability FR2 sample of 422 quasars and two comparison samples of radio-quiet and non-FR2 radio-loud quasars, matched in their redshift distributions, we constructed composite optical spectra from the SDSS spectroscopic data. Based on these spectra we can conclude that the FR2 quasars have stronger high-ionization emission lines compared to both the radio quiet and non-FR2 radio loud sources. This is consistent with the notion that the emission lines are brightened by ongoing shock ionization of ambient gas in the quasar host as the radio source expands.
We present ugriz photometry and optical spectroscopy for 28 DB and DO white dwarfs with temperatures between 28,000K and 45,000K. About 10 of these are particularly well-observed; the remainder are candidates. These are the hottest DB stars yet found , and they populate the DB gap between the hotter DO stars and the familiar DB stars cooler than 30,000K. Nevertheless, after carefully matching the survey volumes, we find that the ratio of DA stars to DB/DO stars is a factor of 2.5 larger at 30,000 K than at 20,000 K, suggesting that the DB gap is indeed deficient and that some kind of atmospheric transformation takes place in roughly 10% of DA stars as they cool from 30,000 K to 20,000 K.
We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources. In each photometric bandpass we compute various low-order lightcurve statistics and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g=20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (<2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to expected performance by the Large Synoptic Survey Telescope and estimate that it will obtain well-sampled 2% accurate, multi-color lightcurves for ~2 million low-redshift quasars, and will discover at least 50 million variable stars.
The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX; Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan Digital Sky Surveys 0.5m photometric telescope (PT) and 2.5m survey telescope were used to obser ve the afterglow of GRB010222 starting 4.8 hours after the GRB. The 0.5m PT observed the afterglow in five, 300 sec g band exposures over the course of half an hour, measuring a temporal decay rate in this short period of F_nu propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart nearly simultaneously in five filters (u g r i z), with r = 18.74+/-0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglows temporal decay, are well fit by the power-law F_nu propto nu^{-0.90+/-0.03} with the exception of the u band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star forming region.
70 - Jeffrey R. Pier 2002
The astrometric calibration of the Sloan Digital Sky Survey is described. For point sources brighter than r ~ 20 the astrometric accuracy is 45 milliarcseconds (mas) rms per coordinate when reduced against the USNO CCD Astrograph Catalog, and 75 mas rms when reduced against Tycho-2, with an additional 20 - 30 mas systematic error in both cases. The rms errors are dominated by anomalous refraction and random errors in the primary reference catalogs. The relative astrometric accuracy between the r filter and each of the other filters (u g i z) is 25 - 35 mas rms. At the survey limit (r ~ 22), the astrometric accuracy is limited by photon statistics to approximately 100 mas rms for typical seeing. Anomalous refraction is shown to contain components correlated over two or more degrees on the sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا